Ю. В. Кольцов1
1 Нижегородский научно-исследовательский приборостроительный институт (г. Нижний Новгород, Россия)
Постановка проблемы. Работа посвящена новым и перспективным направлениям разработки антенных решеток СВЧ- и КВЧ-диапазонов, которые появились в последние годы и способны работать в системах растущего рынка 5G.
Цель. Подробно рассмотреть перспективные направления развития антенных решеток.
Результаты. Показаны принципы построения различных антенных решеток, особенности технологий их разработки и изготовления и области применения антенных систем. Проведен анализ особенностей построения антенных решеток, начиная с миниатюрных антенн и кончая антеннами с большой апертурой, что указывает на широкий спектр применения антенных решеток для наземных, воздушных, космических и морских приложений.
Практическая значимость. Представленные результаты создают основу для промышленного производства перспективных антенных решеток.
Кольцов Ю.В. Антенные решетки в эпоху 5G. Часть 2. Перспективные разработки // Антенны. 2022. № 6. С. 5–34. DOI: https://doi.org/10.18127/j03209601-202206-01
- Кольцов Ю.В. Антенные решетки в эпоху 5G. Часть 1. Разработки, ставшие классическими // Антенны. 2022. № 5. С. 5–29.
- Martinez-Ramon M., Gupta A., Rojo-Alvarez J.L., Christodoulou C. Machine learning applications in electromagnetics and antenna array processing. Artech House. 2020.
- Gentile R., Chen H., Wu A. Algorithms to antennas: Phased-array beam-pattern synthesis using deep-learning techniques // Microwaves & RF. 2022. February 16.
- Blanco S., Napoletano P., Raimondi A. et al. AESA adaptive beamforming using deep learning // Proceedings of 2020 IEEE Radar Conference. 2020. P. 1–6.
- Kim J.H., Choi S.W. A deep learning-based approach for radiation pattern synthesis of an array antenna // IEEE Access. 2020. V. 8. P. 226059–226063.
- Special issue on machine learning in antenna design, modeling and measurements // IEEE Transactions on Antennas and Propagation. 2022. V. 70. № 7.
- Special issue on artificial intelligence: New frontiers in real-time inverse scattering and electromagnetic imaging // IEEE Transactions on Antennas and Propagation. 2022. V. 70. № 8.
- Добычина Е.М., Кольцов Ю.В. Цифровые антенные решетки и скоростные аналого-цифровые преобразователи. М.: Изд-во МАИ. 2012.
- Добычина Е.М., Кольцов Ю.В. Цифровые антенные решетки в бортовых радиолокационных системах. М.: Изд-во МАИ. 2013.
- Кольцов Ю.В. Сверхскоростные аналого-цифровые преобразователи // Успехи современной радиоэлектроники. 2013. № 11. С. 35–58.
- Kull L., Pliva J., Toifl T. et al. Implementation of low-power 6–8 b 30–90 GS/s time-interleaved ADCs with optimized input bandwidth in 32 nm CMOS // IEEE Journal of Solid-State Circuits. 2016. V. 51. № 3. P. 636–648.
- Park J., Jang J., Lee G. et al. A time domain artificial intelligence radar system using 33-GHz direct sampling for hand gesture recognition // IEEE Journal of Solid-State Circuits. 2020. V. 55. № 4. P. 879–888.
- Ellermeyer T., Schmid R., Bielik A. et al. DA and AD converters in SiGe technology: Speed and resolution for ultra high data rate applications // 36th European Conference and Exhibition on Optical Communication. Turin, Italy. 2010. Р. 1–6.
- Moller M. High-speed electronic circuits for 100 Gb/s transport networks // 2010 Conference on Optical Fiber Communication (OFC/NFOEC). San Diego, CA, USA. 2010. Р. 1–3.
- Greshishchev Y.M., Pollex D., Wang S.-C. et al. A 56GS/S 6b DAC in 65nm CMOS with 256×6b memory // IEEE Int. Solid-State Circuits Conf. Tech. Dig. San Francisco, CA, USA. 2011. P. 194–196.
- Laperle C., O’Sullivan M. Advances in high-speed DACs, ADCs, and DSP for optical coherent transceivers // Journal Lightwave Technology. 2014. V. 32. № 4. P. 629–643.
- Kull L., Toifl T., Schmatz M. et al. A 90-GS/s 8b 667 mW 64x interleaved SAR ADC in 32 nm digital SOI CMOS // Proc. Int. Solid-State Circuits Conference (ISSCC). San Francisco, CA, USA. 2014. P. 378.
- Randel S., Corteselli S., Winzer P.J. et al. Generation of a digitally shaped 55-GBd 64-QAM single-carrier signal using novel high-speed DACs // Conf. OFC 2014. San Francisco, CA, USA. 2014. P. 1–3.
- Huang H., Heilmeyer J., Grözing M. et al. An 8-bit 100-GS/s distributed DAC in 28-nm CMOS for optical communications // IEEE Transactions on Microwave Theory and Techniques. 2015. V. 63. № 4. P. 1211–1218.
- Arayashiki Y., Ikeda M., Amano Y. 80 GBd 6-bit DAC in InP DHBT for arbitrary waveform generator // Electronics Letters. 2016. V. 52. № 23. P. 1937–1938.
- Nagatani M., Nosaka H. High-performance compound-semiconductor integrated circuits for advanced digital coherent optical communications systems // IEICE Electronics Express. 2016. V. 13. № 18. P. 1–20.
- Zimmer T., Bock J., Buchali F. et al. SiGe HBTs and BiCMOS technology for present and future millimeter-wave systems // IEEE Journal of Microwaves. 2021. V. 1. № 1. P. 288–298.
- Executive interview: Matthias Frei, Founder and CEO, Micram // Microwave Journal. 2021. January 15.
- Analog-to-digital converter. Press announcement: Fujitsu ASIC and Dot Hill [Электронный ресурс] / URL: http://www.fujitsu.com/ ca/en/semiconductors/sms/asic/products/adcip/.
- Super-high-speed 56 GSa/s analog-to-digital converter / Datasheet SMS-FS-21364-03/2010.
- Dedic I. 56 Gs/s ADC: Enabling 100 GbE // 2010 Conference on Optical Fiber Communication (OFC/NFOEC). 2010. Р. 1–3.
- LUKE-ES analog to digital converter / Factsheet LUKE-ES 55–65 GSa/s 8 bit ADC. Fujitsu Semiconductor Europe FSEU–C63–29MAR2012.
- У Fujitsu готова первая модель нового семейства АЦП, выпускаемых по 28-нанометровой технологии CMOS [Электронный ресурс] / URL: http://www.pvsm.ru/news/29638/print/.
- Fujitsu demonstrates first ADC device in family of 28 nm CMOS converter solutions [Электронный ресурс] / URL: http://www.fujitsu.com/ emea/news/pr/fseu-en_20130312-1054-fujitsu-adc-28nm-cmos-converter.html.
- URL: http://www.info-fujitsu.com/Fujitsu_Image_Bank/d/18010-1/C66-Factsheet+Rotta_web.pdf.
- Романова И. АЦП и ЦАП компании Fujitsu – новые технологии, высокая производительность // Электроника: НТБ. 2014. № 1. С. 96–100.
- Factsheet ROTTA. Test chip and development Kit 38–92 GSa/s 8-bit ADC family / FSEU–C66–10SEPT13. [Электронный ресурс] / URL: http://www.info-fujitsu.com/Fujitsu_Image_Bank/d/18010-1/C66-Factsheet+Rotta_web.pdf.
- Fujitsu Semiconductor Group [Электронный ресурс] / URL: http://emea.fujitsu.com/semiconductor.
- Happich J. Millimeter-band CMOS chip communicates at 56 Gbps // EE Times Europe News. 2016. February 01.
- URL: https://svpressa.ru/economy/article/345729/?utm_source=finobzor.ru // Свободная пресса. 11 сентября 2022 г.
- Joosting J.-P. SiGe BiCMOS platform targets 6G, V2V, Wi-Fi and radar // eeNews Embedded. 2022. September 12.
- У истоков российских сверхточных современных литографов // Техносфера. Россия. Российский технический медиаресурс. 20 октября 2022 г. [Электронный ресурс] / URL: https://tehnoomsk.ru/archives/6359?utm_source=ixbtcom.
- DAC7201 72 GS/s digital to analog converter system data sheet / Brochure_V1.8, DAC3_SYSTEM_EN. 2016.
- DAC10001 and DAC10002. 100 GS/s digital to analog converter system / Data Sheet. Micram. DAC4_SYSTEM_EN, V3.3. 2016.
- USPA platform. UltraFast real time development systems // Micram Microelectronic GmbH. 2020. November.
- Modular, high speed prototyping platform // Microwave Journal. 2021. January 14.
- Leading solution providers select DesignCon 2017 to debut new products, demos and services // Signal Integrity. 2017. January 30.
- Advanced data converters for next generation sensing and communications [Электронный ресурс] / URL: https://jariettech.com/.
- Kappes M. All-digital antennas for mmWave systems // Microwave Journal. 2019. V. 62. № 6. P. 84.
- We are ushering in a new era of digital data conversion [Электронный ресурс] / URL: https://www.iqanalog.com/technology.
- Ahmad S., Subramanian S., Boppana V. et al. Xilinx first 7 nm device: Versal AI core (VC1902) // 2019 IEEE Hot Chips 31 Symposium. 2019. P. 1–28.
- Versal architecture and product data sheet: Overview // Xilinx. Product Specification. DS950 (v1.16). 2022, April 20.
- Шадрин Д. Versal: новое поколение адаптивных систем Xilinx / Макро Групп, РФ.
- Trinh T. Heterogeneous integration enables direct conversion RF to digital processing at the tactical edge // Microwave Journal. 2022. V. 65. № 9. P. 48–50.
- Designer’s journey: Navigating the transition to Versal® ACAP // Mercury Systems Inc. White Paper. 2022. 8107.00E-0422-wp-ACAPJourney.
- Mercury introduces new RFS1140 system-in-package (SiP) // Powered by GlobalSpec. Engineering360 News Desk. 2022, May 6.
- Викулов И. Гетерогенная интеграция – новый этап развития интегральной СВЧ-электроники // Электроника: НТБ. 2016. № 1. С. 104–112.
- Aue V. Open RAN radio unit architecture for mMIMO // Microwave Journal. 2022. V. 65. № 9. P. 76–88.
- Воскресенский Д.И., Добычина Е.М. Цифровые антенные решетки бортовых систем. М.: Радиотехника. 2020.
- Wittek M., Fritzsch C., Schroth D. Employing liquid crystal-based smart antennas for satellite and terrestrial communication // Information Display. 2021. V. 37. P. 17–22.
- Kamoda H., Kuki T., Fujikake H., Nomoto T. Millimeter-wave beam former using liquid crystal // Electronics and Communications in Japan. Part II: Electronics. 2005. № 8. P. 10–18.
- Kamoda H., Kuki T., Fujikake H., Nomoto T. Millimeter-wave beam former using liquid crystal // Conf. Digest of 28th Int. Conf. on Infrared and Millimeter Waves W4–1. 2003. P. 259–260.
- Perez-Palomino G., Encinar J.A., Barba M. et al. Millimeter-wave beam scanning antennas using liquid Crystals // 9th European Conf. on Antennas and Propagation (EuCAP). Lisbon, Portugal. 2015.
- Henry C. German startup takes Kymeta-like LCD approach to flat panel antenna manufacturing // SpaceNews. 2018. May 7.
- Unlocking the capabilities of mmWave 5G [Электронный ресурс] / URL: https://www.alcansystems.com/5g/.
- German company develops innovative flat panel antennas for satellite communications systems / 2018. July 5. [Электронный ресурс] / URL: https://www.everythingrf.com/news/details/6457-German-Company-Develops-Innovative-Flat-Panel-Antennas-for-Satellite-Communications-Systems.
- Dehghani M.R. ALCAN’s smart antenna’s 5G opportunities and solutions / Posted by ALCAN Systems on April 15, 2019. [Электронный ресурс] / URL: https://www.alcansystems.com/alcans-smart-antennas-5g-opportunities-and-solutions/.
- Патент № EP2761693B1. Electronically steerable planar phased array antenna / R. Jakoby, F. Goelden, O.H. Karabey, A. Manabe. Опубл. 17.05.2017. Бюл. № 20.
- Dehghani M.R., Akgiray A.H., Mehmood A. et al. Liquid crystals: A power and cost-efficient electronically steerable antenna solution for 5G // Microwave Journal. 2020. V. 63. № 5. P. 110–120.
- Karabey O.H., Gaebler A., Strunck S., Jakoby R. A 2-D electronically steered phased-array antenna with 2x2 elements in LC display technology // IEEE Transactions on Microwave Theory and Techniques. 2012. V. 60. № 5. P. 1297–1306.
- Кольцов Ю.В. Метаматериальные технологии антенных решеток // Успехи современной радиоэлектроники. 2017. № 4. С. 30–47.
- Press release: SES and ALCAN, a German smart antenna company, are working together to develop a new flat panel antenna for SES’s O3b mPOWER system // Alcan Systems. 2018. March 15.
- ALCAN announces ultra-low profile satellite broadband terminal for LEO and MEO satellites // Microwave Journal. 2020. June 18.
- ALCAN and AGC collaborate to develop transparent antenna for mmWave 5G FWA // Microwave Journal. 2022. March 29.
- Huang Y., Xing L., Song C. et al. Liquid antennas: Past, present and future // IEEE Open Journal of Antennas and Propagation. 2021. V. 2. P. 473–487.
- Antennas and Propagation Magazine IEEE. 2022. V. 64. № 4.
- Rogers Corporation launching Radix™ 3D printable dielectrics family of products at IPC APEX EXPO 2022 // Microwave Journal. 2022. January 24.
- Hindle P. Comprehensive survey of commercial mmWave phased array companies. Focused on SATCOM and 5G applications // Microwave Journal. 2020. January 15.
- Zhang B., Zhan Z., Cao Y. et al. Metallic 3-D printed antennas for millimeter and submillimeter wave applications // IEEE Transactions on Terahertz Science and Technology. 2016. V. 6. № 4. P. 592–600.
- Li Y., Wang C., Yuan H. et al. A 5G MIMO antenna manufactured by 3D printing method // IEEE Antennas and Wireless Propagation Letters. 2016. V. 16. P. 657–660.
- Alkaraki S., Gao Y. mm-Wave low cost 3D printed MIMO antennas with beam switching capabilities for 5G communication systems // IEEE Access. 2020. V. 8. P. 32531–32541.
- Alkaraki S., Jilani S.F., Kelly J. et al. 8х4 mm-Wave 3D printed MIMO antenna for 5G wireless communication // 15th European Conf. Antennas and Propagation (EuCAP). Dusseldorf, Germany. 2021. P. 1–4.
- Alkaraki S., Gao Y., Torrico M.O.M. et al. Performance comparison of simple and low cost metallization techniques for 3D printed antennas at 10 GHz and 30 GHz // IEEE Access. 2018. V. 6. P. 64261–64269.
- Elwi T., Hassain Z.A.A., Tawfeeq O.A. Hilbert metamaterial printed antenna based on organic substrates for energy harvesting // IET Microwaves, Antennas & Propagation. 2019. V. 13. № 12. P. 2185–2192.
- Meister T., Ishida K., Carta C. et al. Flexible electronics for wireless communication: A technology and circuit design review with an application example // IEEE Microwave Magazine. 2022. V. 23. № 4. P. 24–44.
- The stretchy electronics revolution // eeNews Europe. 2020. April 14.
- nScrypt 3D prints curved phased array antenna for US Air Force // Microwave Journal. 2021. June 1.
- Mraz S. Antennas for 5G networks could be built from 3D-printed tiles // Machine Design. 2022. April 8.
- Flaherty N. 3D printed MIMO tile antenna for 5G+ designs // eeNews Europe. 2022. April 8.
- Hashemi M.R.M., Fikes A.C., Gal-Katziri M. et al. A flexible phased array system with low areal mass density // Nature Electronics. 2019. V. 2. P. 195–205.
- URL: http://www.its.caltech.edu/ ~sslab/PUBLICATIONS/s41928-019-0247-9.pdf.
- Blain L. Energy-harvesting card treats 5G networks as wireless power grids // New Atlas. 2021. March 28.
- Eid A., Hester J.G., Tentzeris M. 5G as a wireless power grid // Scientific Reports. 2021. V. 11. Article number 636.
- Boyd J. New transceiver power and data simultaneously // IEEE Spectrum. 2022. June 27.
- Electricity and data over-the-air: The simultaneous transmission of 5G and power // Tokyo Tech. 2022. June 15. [Электронный ресурс] / URL: https://www.titech.ac.jp/english/news/2022/064259.
- Lean and mean: Maximizing 5G communications with an energy-efficient relay network // Tokyo Tech. 2021. June 16. [Электронный ресурс] / URL: https://www.titech.ac.jp/english/news/2021/061150.
- Heydari P. Terahertz integrated circuits and systems for high-speed wireless communications: Challenges and design perspectives // IEEE Open Journal of the Solid-State Circuits Society. 2021. V. 1. P. 18–36.
- Joosting J.-P. Tiny antenna array focuses THz energy to generate high-resolution images // eeNews Embedded. 2022. February 21.
- Alonso-del Pino M., Jung-Kubiak C., Reck T. et al. Micromachining for advanced terahertz // IEEE Microwave Magazine. 2020. V. 21. № 1. P. 18–34.
- Gu C., Gao S., Sanz-Izquierdo B. Wideband low-THz antennas for high-speed wireless communications // 2017 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC). Verona, Italy. 2017. P. 141–145.
- Pushed to the limit: A CMOS-based transceiver for beyond 5G applications at 300 GHz // Tokyo Tech. 2021. February 5. [Электронный ресурс] / URL: https://www.titech.ac.jp/english/news/2021/048934.
- Sengupta K., Hajimiri A. A 0.28 THz 4×4 power-generation and beam-steering array // IEEE International Solid-State Circuits Conference. Digest of Technical Papers. San Francisco, CA, USA. 2012. V. 55. P. 256–258.
- Sengupta K., Hajimiri A. Distributed active radiation for THz signal generation // IEEE International Solid-State Circuits Conference. Digest of Technical Papers. San Francisco, CA, USA. 2011. Р. 288–289.
- He Y., Chen Y., Zhang L. et al. An overview of terahertz antennas // China Communications. 2020. V. 17. № 7. P. 124–165.
- Yi X., Wang C., Hu Z. et al. Emerging terahertz integrated systems in Silicon // IEEE Transactions on Circuits and Systems I. 2021. V. 68. № 9. P. 3537–3550.
- Xie J., Ye W., Zhou L., Guo X. A review on terahertz technologies accelerated by Silicon Photonics // Nanomaterials. 2021. V. 11. № 7. P. 1646.
- Gu C., Gao S., Sanz-Izquierdo B. Low-cost wideband low-THz antennas for wireless communications and sensing // 2017 10th UK–Europe–China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT). Liverpool, UK. 2017.
- Xu J., Chen Z.N., Qing X. 270-GHz LTCC-integrated strip-loaded linearly polarized radial line slot array antenna // IEEE Transactions on Antennas and Propagation. 2013. V. 61. № 4. P. 1794–1801.
- Kim D., Hirokawa J., Ando M. et al. 64х64-element and 32х32-element slot array antennas using double-layer hollow-waveguide corporate-feed in the 120 GHz Band // IEEE Transactions on Antennas and Propagation. 2014. V. 62. № 3. P. 1507–1512.
- Hirokawa J. High-gain high-efficiency and wideband planar hollow-waveguide antennas by diffusion-bonding of laminated metal plates for sub-millimeter wave and THz bands // Proc. IEEE Int. Topical Meeting Microwave Photonics. Noordwijk, Netherlands. 2012. P. 64–67.
- Petosa A., Ittipiboon A. Dielectric resonator antennas: A historical review and the current state of the art // IEEE Antennas and Propagation Magazine. 2010. V. 52. № 5. P. 91–116.
- Singhwal S.S., Matekovits L., Kanaujia B.K. et al. Dielectric resonator antennas: Applications and developments in multiple-input, multiple-output technology // IEEE Antennas and Propagation Magazine. 2022. V. 64. № 3. P. 26–39.
- Yadav S.K., Kaur A., Khanna R. Online spotlight: A comprehensive survey of ultra-wideband dielectric resonator antennas // Microwave Journal. 2022. January 12.
- Dielectric resonator antenna array for 5G mm-Wave applications // everythingRF. 2019. October 21.
- Caratelli D., Al-Rawi A., Song J., Favreau D. Dielectric resonator antenna arrays for 5G wireless communications // Microwave Journal. 2020. V. 63. № 2. P. 36–46.
- Pance K., Taraschi G. Ultra-efficient wideband multi-layer dielectric resonator antennas and arrays // Microwave Journal. 2022. V. 65. № 2. P. 23–36.
- Cardona S., Schmelzer J. A disruptive approach to mmWave for wireless telecom applications // Microwave Journal. 2022. V. 65. № 2. P. 38–48.
- Zhang X., Kwon K., Henriksson J. et al. A large-scale microelectromechanical-systems-based silicon photonics LiDAR // Nature. 2022. V. 603. P. 253–258.
- Chip-based lidar packs the pixels for use in vehicles, more // Photonics Spectra. 2022. V. 56. № 5. P. 28–29.
- Dostart N., Zhang B., Khilo A. et al. Serpentine optical phased arrays for scalable integrated photonic lidar beam steering // Optica. 2020. V. 7. № 6. P. 726–733.
- Scalable approach to lidar could propel autonomous vehicles, other tech // Vision–Spectra. 2020. July.
- Anderson T. Plasma antennas. 2nd Ed. Artech House. 2020.
- Плазменная антенна Plasma antenna Plasma Silicon Antenna (PSiAN) [Электронный ресурс] / URL: http://qrz.center/2354/ plazmiennaia-antienna-plasma-antenna-plasma-silicon-antenna-psian/.
- Fathy A.E., Rosen A., Owen H.S. et al. Silicon-based reconfigurable antennas – Concepts, analysis, implementation, and feasibility // IEEE Transactions on Microwave Theory and Techniques. 2003. V. 51. № 6. P. 1650–1661.
- Jackson R.P., Mitchell S.J.N., Fusco V. Physical modeling of millimetre wave signal reflection from forward biased PIN diodes // Solid-State Electronics. 2010. V. 54. № 2. P. 149–152.
- Kim D.-J., Jo E.-S., Cho Y.-K. et al. A frequency reconfigurable dipole antenna with solid-state plasma in silicon // Scientific Reports. 2018. V. 8. Article number 14996.
- Alexeff I., Anderson T., Parameswaran S. et al. Experimental and theoretical results with plasma antennas // IEEE Transactions on Plasma Science. 2006. V. 34. № 2. P. 166–172.
- Plasma antennas unveils PSiAN mmWave technology to halve cost of 5G base stations // Microwave Journal. 2017. October 2.
- Plasma antennas announces mmWave PSiAN solution for smartphones, consumer devices // Microwave Journal. 2017. October 18.
- BT trials new quantum radios to boost next-generation 5G & IoT networks // Microwave Journal. 2022. May 18.