Yu. V. Koltzov1
1 Nizhegorodskiy Research Instrument Engineering Institute (Nizhny Novgorod, Russia)
Over the past two decades, advances in the telecommunications industry have been driven in large part by the rapidly increasing performance requirements of online applications. Not only actual services becoming more and more resource intensive (video streaming or over-the-air car software updates), but our digital and multi-screen lifestyle is also fueling this throughput explosion.
Successive generations of mobile communication technologies have been developed and deployed to meet the need for more performance. At the same time, mobile networks are focused on the use of higher frequencies, which provides greater throughput. Case in point: 3G networks operate primarily on the 900 MHz and 2.1 GHz bands, while 4G networks are limited to frequencies up to 2.5 GHz.
Antenna arrays have mastered frequencies of tens of gigahertz, operate at frequencies of 300–350 GHz and in optics. Ultimately, this leads to an expansion of functionality, a reduction in size and weight, and creates conditions for large-scale production.
In recent years, many new interesting antenna array technologies have appeared in antenna technology, such as digital, liquid crystal, 3D printed, flexible, terahertz, dielectric resonator, optical, plasma, quantum, including artificial intelligence for dynamic control of the AESA.
This solves many of the problems that traditional antenna technologies have not been able to overcome and have prevented the creation of new antenna shapes and applications that are not even possible with traditional antenna array technology. Unique new approaches will solve a wide range of challenges faced today in 5G applications, as well as satellite communications and radar.
The paper considers the principles of construction of various antenna arrays, their areas of application and technology features. An analysis of the features of the construction of antenna arrays, ranging from miniature to large aperture, is given, which indicates a wide range of applications for antenna arrays: for ground, air, space and marine applications, as well as for industrial and medical applications. The presented results form the basis for a wide industrial production of the most modern antenna arrays.
Koltzov Yu.V. Antenna arrays in the 5G era. Part 2. Promising developments. Antennas. 2022. № 6. P. 5–34. DOI: https://doi.org/ 10.18127/j03209601-202206-01 (in Russian)
- Kol'tsov Yu.V. Antennye reshetki v epokhu 5G. Chast' 1. Razrabotki, stavshie klassicheskimi. Antenny. 2022. № 5. S. 5–29. (in Russian)
- Martinez-Ramon M., Gupta A., Rojo-Alvarez J.L., Christodoulou C. Machine learning applications in electromagnetics and antenna array processing. Artech House. 2020.
- Gentile R., Chen H., Wu A. Algorithms to antennas: Phased-array beam-pattern synthesis using deep-learning techniques. Microwaves & RF. 2022. February 16.
- Blanco S., Napoletano P., Raimondi A. et al. AESA adaptive beamforming using deep learning. Proceedings of 2020 IEEE Radar Conference. 2020. P. 1–6.
- Kim J.H., Choi S.W. A deep learning-based approach for radiation pattern synthesis of an array antenna. IEEE Access. 2020. V. 8. P. 226059–226063.
- Special issue on machine learning in antenna design, modeling and measurements. IEEE Transactions on Antennas and Propagation. 2022. V. 70. № 7.
- Special issue on artificial intelligence: New frontiers in real-time inverse scattering and electromagnetic imaging. IEEE Transactions on Antennas and Propagation. 2022. V. 70. № 8.
- Dobychina E.M., Kol'tsov Yu.V. Tsifrovye antennye reshetki i skorostnye analogo-tsifrovye preobrazovateli. M.: Izd-vo MAI. 2012. (in Russian)
- Dobychina E.M., Kol'tsov Yu.V. Tsifrovye antennye reshetki v bortovykh radiolokatsionnykh sistemakh. M.: Izd-vo MAI. 2013. (in Russian)
- Kol'tsov Yu.V. Sverkhskorostnye analogo-tsifrovye preobrazovateli. Uspekhi sovremennoj radioelektroniki. 2013. № 11. S. 35–58. (in Russian)
- Kull L., Pliva J., Toifl T. et al. Implementation of low-power 6–8 b 30–90 GS/s time-interleaved ADCs with optimized input bandwidth in 32 nm CMOS. IEEE Journal of Solid-State Circuits. 2016. V. 51. № 3. P. 636–648.
- Park J., Jang J., Lee G. et al. A time domain artificial intelligence radar system using 33-GHz direct sampling for hand gesture recognition. IEEE Journal of Solid-State Circuits. 2020. V. 55. № 4. P. 879–888.
- Ellermeyer T., Schmid R., Bielik A. et al. DA and AD converters in SiGe technology: Speed and resolution for ultra high data rate applications. 36th European Conference and Exhibition on Optical Communication. Turin, Italy. 2010. P. 1–6.
- Moller M. High-speed electronic circuits for 100 Gb/s transport networks. 2010 Conference on Optical Fiber Communication (OFC/NFOEC). San Diego, CA, USA. 2010. P. 1–3.
- Greshishchev Y.M., Pollex D., Wang S.-C. et al. A 56GS/S 6b DAC in 65nm CMOS with 256×6b memory. IEEE Int. Solid-State Circuits Conf. Tech. Dig. San Francisco, CA, USA. 2011. P. 194–196.
- Laperle C., O’Sullivan M. Advances in high-speed DACs, ADCs, and DSP for optical coherent transceivers. Journal Lightwave Technology. 2014. V. 32. № 4. P. 629–643.
- Kull L., Toifl T., Schmatz M. et al. A 90-GS/s 8b 667 mW 64x interleaved SAR ADC in 32 nm digital SOI CMOS. Proc. Int. Solid-State Circuits Conference (ISSCC). San Francisco, CA, USA. 2014. P. 378.
- Randel S., Corteselli S., Winzer P.J. et al. Generation of a digitally shaped 55-GBd 64-QAM single-carrier signal using novel high-speed DACs. Conf. OFC 2014. San Francisco, CA, USA. 2014. P. 1–3.
- Huang H., Heilmeyer J., Grözing M. et al. An 8-bit 100-GS/s distributed DAC in 28-nm CMOS for optical communications. IEEE Transactions on Microwave Theory and Techniques. 2015. V. 63. № 4. P. 1211–1218.
- Arayashiki Y., Ikeda M., Amano Y. 80 GBd 6-bit DAC in InP DHBT for arbitrary waveform generator. Electronics Letters. 2016. V. 52. № 23. P. 1937–1938.
- Nagatani M., Nosaka H. High-performance compound-semiconductor integrated circuits for advanced digital coherent optical communications systems. IEICE Electronics Express. 2016. V. 13. № 18. P. 1–20.
- Zimmer T., Bock J., Buchali F. et al. SiGe HBTs and BiCMOS technology for present and future millimeter-wave systems. IEEE Journal of Microwaves. 2021. V. 1. № 1. P. 288–298.
- Executive interview: Matthias Frei, Founder and CEO, Micram. Microwave Journal. 2021. January 15.
- Analog-to-digital converter. Press announcement: Fujitsu ASIC and Dot Hill [Elektronnyj resurs]. URL: http://www.fujitsu.com/ca/en/ semiconductors/sms/asic/products/adcip/.
- Super-high-speed 56 GSa/s analog-to-digital converter. Datasheet SMS-FS-21364-03/2010.
- Dedic I. 56 Gs/s ADC: Enabling 100 GbE. 2010 Conference on Optical Fiber Communication (OFC/NFOEC). 2010. P. 1–3.
- LUKE-ES analog to digital converter. Factsheet LUKE-ES 55–65 GSa/s 8 bit ADC. Fujitsu Semiconductor Europe FSEU–C63–29MAR2012.
- U Fujitsu gotova pervaya model' novogo semejstva ATsP, vypuskaemykh po 28-nanometrovoj tekhnologii CMOS [Elektronnyj resurs]. URL: http://www.pvsm.ru/news/29638/print/. (in Russian)
- Fujitsu demonstrates first ADC device in family of 28 nm CMOS converter solutions [Elektronnyj resurs]. URL: http://www.fujitsu.com/ emea/news/pr/fseu-en_20130312-1054-fujitsu-adc-28nm-cmos-converter.html.
- URL: http://www.info-fujitsu.com/Fujitsu_Image_Bank/d/18010-1/C66-Factsheet+Rotta_web.pdf.
- Romanova I. ATsP i TsAP kompanii Fujitsu – novye tekhnologii, vysokaya proizvoditel'nost'. Elektronika: NTB. 2014. № 1. S. 96–100. (in Russian)
- Factsheet ROTTA. Test chip and development Kit 38–92 GSa/s 8-bit ADC family. FSEU–C66–10SEPT13. [Elektronnyj resurs]. URL: http://www.info-fujitsu.com/Fujitsu_Image_Bank/d/18010-1/C66-Factsheet+Rotta_web.pdf.
- Fujitsu Semiconductor Group [Elektronnyj resurs]. URL: http://emea.fujitsu.com/semiconductor.
- Happich J. Millimeter-band CMOS chip communicates at 56 Gbps. EE Times Europe News. 2016. February 01.
- URL: https://svpressa.ru/economy/article/345729/?utm_source=finobzor.ru. Svobodnaya pressa. 11 sentyabrya 2022 g. (in Russian)
- Joosting J.-P. SiGe BiCMOS platform targets 6G, V2V, Wi-Fi and radar. eeNews Embedded. 2022. September 12.
- U istokov rossijskikh sverkhtochnykh sovremennykh litografov. Tekhnosfera. Rossiya. Rossijskij tekhnicheskij mediaresurs. 20 oktyabrya 2022 g. [Elektronnyj resurs]. URL: https://tehnoomsk.ru/archives/6359?utm_source=ixbtcom. (in Russian)
- DAC7201 72 GS/s digital to analog converter system data sheet. Brochure_V1.8, DAC3_SYSTEM_EN. 2016.
- DAC10001 and DAC10002. 100 GS/s digital to analog converter system. Data Sheet. Micram. DAC4_SYSTEM_EN, V3.3. 2016.
- USPA platform. UltraFast real time development systems. Micram Microelectronic GmbH. 2020. November.
- Modular, high speed prototyping platform. Microwave Journal. 2021. January 14.
- Leading solution providers select DesignCon 2017 to debut new products, demos and services. Signal Integrity. 2017. January 30.
- Advanced data converters for next generation sensing and communications [Elektronnyj resurs]. URL: https://jariettech.com/.
- Kappes M. All-digital antennas for mmWave systems. Microwave Journal. 2019. V. 62. № 6. P. 84.
- We are ushering in a new era of digital data conversion [Elektronnyj resurs]. URL: https://www.iqanalog.com/technology.
- Ahmad S., Subramanian S., Boppana V. et al. Xilinx first 7 nm device: Versal AI core (VC1902). 2019 IEEE Hot Chips 31 Symposium. 2019. P. 1–28.
- Versal architecture and product data sheet: Overview. Xilinx. Product Specification. DS950 (v1.16). 2022, April 20.
- Shadrin D. Versal: novoe pokolenie adaptivnykh sistem Xilinx. Makro Grupp, RF. (in Russian)
- Trinh T. Heterogeneous integration enables direct conversion RF to digital processing at the tactical edge. Microwave Journal. 2022. V. 65. № 9. P. 48–50.
- Designer’s journey: Navigating the transition to Versal® ACAP. Mercury Systems Inc. White Paper. 2022. 8107.00E-0422-wp-ACAPJourney.
- Mercury introduces new RFS1140 system-in-package (SiP). Powered by GlobalSpec. Engineering360 News Desk. 2022, May 6.
- Vikulov I. Geterogennaya integratsiya – novyj etap razvitiya integral'noj SVCh-elektroniki. Elektronika: NTB. 2016. № 1. S. 104–112. (in Russian)
- Aue V. Open RAN radio unit architecture for mMIMO. Microwave Journal. 2022. V. 65. № 9. P. 76–88.
- Voskresenskij D.I., Dobychina E.M. Tsifrovye antennye reshetki bortovykh sistem. M.: Radiotekhnika. 2020. (in Russian)
- Wittek M., Fritzsch C., Schroth D. Employing liquid crystal-based smart antennas for satellite and terrestrial communication. Information Display. 2021. V. 37. P. 17–22.
- Kamoda H., Kuki T., Fujikake H., Nomoto T. Millimeter-wave beam former using liquid crystal. Electronics and Communications in Japan. Part II: Electronics. 2005. № 8. P. 10–18.
- Kamoda H., Kuki T., Fujikake H., Nomoto T. Millimeter-wave beam former using liquid crystal. Conf. Digest of 28th Int. Conf. on Infrared and Millimeter Waves W4–1. 2003. P. 259–260.
- Perez-Palomino G., Encinar J.A., Barba M. et al. Millimeter-wave beam scanning antennas using liquid Crystals. 9th European Conf. on Antennas and Propagation (EuCAP). Lisbon, Portugal. 2015.
- Henry C. German startup takes Kymeta-like LCD approach to flat panel antenna manufacturing. SpaceNews. 2018. May 7.
- Unlocking the capabilities of mmWave 5G [Elektronnyj resurs] / URL: https://www.alcansystems.com/5g/.
- German company develops innovative flat panel antennas for satellite communications systems. 2018. July 5. [Elektronnyj resurs]. URL: https://www.everythingrf.com/news/details/6457-German-Company-Develops-Innovative-Flat-Panel-Antennas-for-Satellite-Communications-Systems.
- Dehghani M.R. ALCAN’s smart antenna’s 5G opportunities and solutions. Posted by ALCAN Systems on April 15, 2019. [Elektronnyj resurs]. URL: https://www.alcansystems.com/alcans-smart-antennas-5g-opportunities-and-solutions/.
- Patent № EP2761693B1. Electronically steerable planar phased array antenna. R. Jakoby, F. Goelden, O.H. Karabey, A. Manabe. Publ. 17.05.2017. Byul. № 20.
- Dehghani M.R., Akgiray A.H., Mehmood A. et al. Liquid crystals: A power and cost-efficient electronically steerable antenna solution for 5G. Microwave Journal. 2020. V. 63. № 5. P. 110–120.
- Karabey O.H., Gaebler A., Strunck S., Jakoby R. A 2-D electronically steered phased-array antenna with 2x2 elements in LC display technology. IEEE Transactions on Microwave Theory and Techniques. 2012. V. 60. № 5. P. 1297–1306.
- Kol'tsov Yu.V. Metamaterial'nye tekhnologii antennykh reshetok. Uspekhi sovremennoj radioelektroniki. 2017. № 4. S. 30–47. (in Russian)
- Press release: SES and ALCAN, a German smart antenna company, are working together to develop a new flat panel antenna for SES’s O3b mPOWER system. Alcan Systems. 2018. March 15.
- ALCAN announces ultra-low profile satellite broadband terminal for LEO and MEO satellites. Microwave Journal. 2020. June 18.
- ALCAN and AGC collaborate to develop transparent antenna for mmWave 5G FWA. Microwave Journal. 2022. March 29.
- Huang Y., Xing L., Song C. et al. Liquid antennas: Past, present and future. IEEE Open Journal of Antennas and Propagation. 2021. V. 2. P. 473–487.
- Antennas and Propagation Magazine IEEE. 2022. V. 64. № 4.
- Rogers Corporation launching Radix™ 3D printable dielectrics family of products at IPC APEX EXPO 2022. Microwave Journal. 2022. January 24.
- Hindle P. Comprehensive survey of commercial mmWave phased array companies. Focused on SATCOM and 5G applications. Microwave Journal. 2020. January 15.
- Zhang B., Zhan Z., Cao Y. et al. Metallic 3-D printed antennas for millimeter and submillimeter wave applications. IEEE Transactions on Terahertz Science and Technology. 2016. V. 6. № 4. P. 592–600.
- Li Y., Wang C., Yuan H. et al. A 5G MIMO antenna manufactured by 3D printing method. IEEE Antennas and Wireless Propagation Letters. 2016. V. 16. P. 657–660.
- Alkaraki S., Gao Y. mm-Wave low cost 3D printed MIMO antennas with beam switching capabilities for 5G communication systems. IEEE Access. 2020. V. 8. P. 32531–32541.
- Alkaraki S., Jilani S.F., Kelly J. et al. 8x4 mm-Wave 3D printed MIMO antenna for 5G wireless communication. 15th European Conf. Antennas and Propagation (EuCAP). Dusseldorf, Germany. 2021. P. 1–4.
- Alkaraki S., Gao Y., Torrico M.O.M. et al. Performance comparison of simple and low cost metallization techniques for 3D printed antennas at 10 GHz and 30 GHz. IEEE Access. 2018. V. 6. P. 64261–64269.
- Elwi T., Hassain Z.A.A., Tawfeeq O.A. Hilbert metamaterial printed antenna based on organic substrates for energy harvesting. IET Microwaves, Antennas & Propagation. 2019. V. 13. № 12. P. 2185–2192.
- Meister T., Ishida K., Carta C. et al. Flexible electronics for wireless communication: A technology and circuit design review with an application example. IEEE Microwave Magazine. 2022. V. 23. № 4. P. 24–44.
- The stretchy electronics revolution. eeNews Europe. 2020. April 14.
- nScrypt 3D prints curved phased array antenna for US Air Force. Microwave Journal. 2021. June 1.
- Mraz S. Antennas for 5G networks could be built from 3D-printed tiles. Machine Design. 2022. April 8.
- Flaherty N. 3D printed MIMO tile antenna for 5G+ designs. eeNews Europe. 2022. April 8.
- Hashemi M.R.M., Fikes A.C., Gal-Katziri M. et al. A flexible phased array system with low areal mass density. Nature Electronics. 2019. V. 2. P. 195–205.
- URL: http://www.its.caltech.edu/ ~sslab/PUBLICATIONS/s41928-019-0247-9.pdf.
- Blain L. Energy-harvesting card treats 5G networks as wireless power grids. New Atlas. 2021. March 28.
- Eid A., Hester J.G., Tentzeris M. 5G as a wireless power grid. Scientific Reports. 2021. V. 11. Article number 636.
- Boyd J. New transceiver power and data simultaneously. IEEE Spectrum. 2022. June 27.
- Electricity and data over-the-air: The simultaneous transmission of 5G and power. Tokyo Tech. 2022. June 15. [Elektronnyj resurs]. URL: https://www.titech.ac.jp/english/news/2022/064259.
- Lean and mean: Maximizing 5G communications with an energy-efficient relay network. Tokyo Tech. 2021. June 16. [Elektronnyj resurs]. URL: https://www.titech.ac.jp/english/news/2021/061150.
- Heydari P. Terahertz integrated circuits and systems for high-speed wireless communications: Challenges and design perspectives. IEEE Open Journal of the Solid-State Circuits Society. 2021. V. 1. P. 18–36.
- Joosting J.-P. Tiny antenna array focuses THz energy to generate high-resolution images. eeNews Embedded. 2022. February 21.
- Alonso-del Pino M., Jung-Kubiak C., Reck T. et al. Micromachining for advanced terahertz. IEEE Microwave Magazine. 2020. V. 21. № 1. P. 18–34.
- Gu C., Gao S., Sanz-Izquierdo B. Wideband low-THz antennas for high-speed wireless communications. 2017 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC). Verona, Italy. 2017. P. 141–145.
- Pushed to the limit: A CMOS-based transceiver for beyond 5G applications at 300 GHz. Tokyo Tech. 2021. February 5. [Elektronnyj resurs]. URL: https://www.titech.ac.jp/english/news/2021/048934.
- Sengupta K., Hajimiri A. A 0.28 THz 4×4 power-generation and beam-steering array. IEEE International Solid-State Circuits Con-ference. Digest of Technical Papers. San Francisco, CA, USA. 2012. V. 55. P. 256–258.
- Sengupta K., Hajimiri A. Distributed active radiation for THz signal generation. IEEE International Solid-State Circuits Conference. Digest of Technical Papers. San Francisco, CA, USA. 2011. P. 288–289.
- He Y., Chen Y., Zhang L. et al. An overview of terahertz antennas. China Communications. 2020. V. 17. № 7. P. 124–165.
- Yi X., Wang C., Hu Z. et al. Emerging terahertz integrated systems in Silicon. IEEE Transactions on Circuits and Systems I. 2021. V. 68. № 9. P. 3537–3550.
- Xie J., Ye W., Zhou L., Guo X. A review on terahertz technologies accelerated by Silicon Photonics. Nanomaterials. 2021. V. 11. № 7. P. 1646.
- Gu C., Gao S., Sanz-Izquierdo B. Low-cost wideband low-THz antennas for wireless communications and sensing. 2017 10th UK–Europe–China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT). Liverpool, UK. 2017.
- Xu J., Chen Z.N., Qing X. 270-GHz LTCC-integrated strip-loaded linearly polarized radial line slot array antenna. IEEE Transactions on Antennas and Propagation. 2013. V. 61. № 4. P. 1794–1801.
- Kim D., Hirokawa J., Ando M. et al. 64x64-element and 32x32-element slot array antennas using double-layer hollow-waveguide corporate-feed in the 120 GHz Band. IEEE Transactions on Antennas and Propagation. 2014. V. 62. № 3. P. 1507–1512.
- Hirokawa J. High-gain high-efficiency and wideband planar hollow-waveguide antennas by diffusion-bonding of laminated metal plates for sub-millimeter wave and THz bands. Proc. IEEE Int. Topical Meeting Microwave Photonics. Noordwijk, Netherlands. 2012. P. 64–67.
- Petosa A., Ittipiboon A. Dielectric resonator antennas: A historical review and the current state of the art. IEEE Antennas and Propagation Magazine. 2010. V. 52. № 5. P. 91–116.
- Singhwal S.S., Matekovits L., Kanaujia B.K. et al. Dielectric resonator antennas: Applications and developments in multiple-input, multiple-output technology. IEEE Antennas and Propagation Magazine. 2022. V. 64. № 3. P. 26–39.
- Yadav S.K., Kaur A., Khanna R. Online spotlight: A comprehensive survey of ultra-wideband dielectric resonator antennas. Microwave Journal. 2022. January 12.
- Dielectric resonator antenna array for 5G mm-Wave applications. everythingRF. 2019. October 21.
- Caratelli D., Al-Rawi A., Song J., Favreau D. Dielectric resonator antenna arrays for 5G wireless communications. Microwave Journal. 2020. V. 63. № 2. P. 36–46.
- Pance K., Taraschi G. Ultra-efficient wideband multi-layer dielectric resonator antennas and arrays. Microwave Journal. 2022. V. 65. № 2. P. 23–36.
- Cardona S., Schmelzer J. A disruptive approach to mmWave for wireless telecom applications. Microwave Journal. 2022. V. 65. № 2. P. 38–48.
- Zhang X., Kwon K., Henriksson J. et al. A large-scale microelectromechanical-systems-based silicon photonics LiDAR. Nature. 2022. V. 603. P. 253–258.
- Chip-based lidar packs the pixels for use in vehicles, more. Photonics Spectra. 2022. V. 56. № 5. P. 28–29.
- Dostart N., Zhang B., Khilo A. et al. Serpentine optical phased arrays for scalable integrated photonic lidar beam steering. Optica. 2020. V. 7. № 6. P. 726–733.
- Scalable approach to lidar could propel autonomous vehicles, other tech. Vision–Spectra. 2020. July.
- Anderson T. Plasma antennas. 2nd Ed. Artech House. 2020.
- Plazmennaya antenna Plasma antenna Plasma Silicon Antenna (PSiAN) [Elektronnyj resurs]. URL: http://qrz.center/2354/plazmiennaia-antienna-plasma-antenna-plasma-silicon-antenna-psian/.
- Fathy A.E., Rosen A., Owen H.S. et al. Silicon-based reconfigurable antennas – Concepts, analysis, implementation, and feasibility. IEEE Transactions on Microwave Theory and Techniques. 2003. V. 51. № 6. P. 1650–1661.
- Jackson R.P., Mitchell S.J.N., Fusco V. Physical modeling of millimetre wave signal reflection from forward biased PIN diodes. Solid-State Electronics. 2010. V. 54. № 2. P. 149–152.
- Kim D.-J., Jo E.-S., Cho Y.-K. et al. A frequency reconfigurable dipole antenna with solid-state plasma in silicon. Scientific Reports. 2018. V. 8. Article number 14996.
- Alexeff I., Anderson T., Parameswaran S. et al. Experimental and theoretical results with plasma antennas. IEEE Transactions on Plasma Science. 2006. V. 34. № 2. P. 166–172.
- Plasma antennas unveils PSiAN mmWave technology to halve cost of 5G base stations. Microwave Journal. 2017. October 2.
- Plasma antennas announces mmWave PSiAN solution for smartphones, consumer devices. Microwave Journal. 2017. October 18.
- BT trials new quantum radios to boost next-generation 5G & IoT networks. Microwave Journal. 2022. May 18.