Ю. В. Кольцов1
1 Нижегородский научно-исследовательский приборостроительный институт (г. Нижний Новгород, Россия)
Постановка проблемы. Работа посвящена наиболее перспективным направлениям разработки антенных решеток СВЧ- и КВЧ-диапазонов, которые появились в последние годы и способны работать в системах стремительно растущего рынка 5G.
Цель. Рассмотреть наиболее значимые достижения в разработке антенных решеток диапазона 5G за последние несколько лет.
Результаты. Показаны принципы построения различных антенных решеток, области их применения и особенности технологий разработки и изготовления. Дан анализ особенностей построения антенных решеток, начиная с миниатюрных и кончая решетками с большой апертурой, что указывает на широкий спектр применения антенных решеток: для наземных, воздушных, космических и морских приложений, а также для промышленных и медицинских приложений.
Практическая значимость. Представленные результаты создают основу для широкого промышленного производства самых современных антенных решеток.
Кольцов Ю.В. Антенные решетки в эпоху 5G. Часть 1. Разработки, ставшие классическими // Антенны. 2022. № 5. С. 5–29. DOI: https://doi.org/10.18127/j03209601-202205-01
- Nawaz A.A., Khan W.T., Ulusoy A.C. Organically packaged components and modules // IEEE Microwave Magazine. 2019. V. 20. № 11. P. 49–72.
- Flaherty N. Boom for SiP design tools // eeNews Europe. 2022. January 17.
- Gu X., Liu D., Baks C., et al. A multilayer organic package with 64 dual-polarized antennas for 28 GHz 5G communication // Proc. 2017 IEEE MTT-S Int. Microwave Symposium. P. 1899–1901.
- Gu X., Valdes-Garcia A., Natarajan A., et al. W-band scalable phased arrays for imaging and communications // IEEE Communications Magazine. 2015. V. 53. № 4. P. 196–204.
- Sadhu P., Gu X., Valdes-Garsia A. The more (antennas), the merrier // IEEE Microwave Magazine. 2019. V. 20. № 12. P. 32–50.
- Gu X., Liu D., Baks C., et al. Development, implementation, and characterization of a 64-element dual-polarized phased-array antenna module for 28-GHz high-speed data communications // IEEE Transactions on Microwave Theory Techniques. 2019. V. 67. № 7. P. 2975–2984.
- Valdes-Garcia A., Natarajan A., Liu D., et al. A fully-integrated dual-polarization 16-element W-band phased-array transceiver in SiGe BiCMOS // 2013 IEEE Radio Frequency Integrated Circuits Symposium. P. 375–378.
- Gu X., Liu D., Baks C., et al. A compact 4-chip package with 64 embedded dual polarization antennas for W-band phased-array transceivers // Proc. 2014 IEEE 64th Electronic Components and Technology Conf. P. 1272–1277.
- Sokol I. Integrated circuit tackles mobile communications issues // Microwaves & RF. 2013. V. 52. № 8. P. 21.
- Sadhu B., Tousi Y., Hallin J., et al. A 28 GHz 32-element phased-array transceiver IC with concurrent dual polarized beams and 1.4 degree beamsteering resolution for 5G communication // Proc. 2017 IEEE Solid-State Circuits Conference. P. 128–129.
- Gu X., Liu D., Baks C., et al. An enhanced 64-element dual-polarization antenna array package for W-band communication and imaging applications // Proc. 2018 IEEE 68th Electronic Components and Technology Conference. P. 197–201.
- IBM and Ericsson announce 5G mmWave phased array antenna module // Microwave Journal. 2017. February 7.
- Gu X., Liu D., Baks C., Tageman O. Development, implementation, and characterization of a 64-element dual-polarized phased-array antenna module for 28-GHz high-speed data communications // IEEE Transactions on Microwave Theory Techniques. 2019. V. 67. № 7. Pt. 2. P. 2975–2984.
- Sadhu B., Tousi Y., Hallin J., et al. A 28-GHz 32-element TRx phased-array IC with concurrent dual-polarized operation and orthogonal phase and gain control for 5G communications // IEEE Journal of Solid-State Circuits. 2017. V. 52. № 12. P. 3373–3391.
- Lee W., Plouchart J.-O., Ozdag C., et al. Fully integrated 94-GHz dual-polarized Tx and Rx phased array chipset in SiGe BiCMOS operating up to 105°C // IEEE Journal of Solid-State Circuits. 2018. V. 53. № 9. P. 2512–2531.
- Shin W., Ku B.H., Inac O., et al. A 108-114 GHz 4×4 wafer-scale phased array transmitter with high-efficiency on-chip antennas // IEEE Journal of Solid-State Circuits. 2013. V. 48. № 9. P. 2041–2055.
- Sowlati T., Sarkar S., Kodavati V., et al. A 60 GHz 144-element phased-array transceiver with 51 dBm maximum EIRP and ±60° beam steering for backhaul application // Proc. 2018 IEEE Int. Solid-State Circuits Conference. Feb. 2018. P. 66–68.
- Sowlati T., Sarkar S., Perumana B.G., et al. A 60-GHz 144-element phased-array transceiver for backhaul application // IEEE Journal of Solid-State Circuits. 2018. V. 53. № 12. P. 3640–3659.
- Shahramian S., Baeyens Y., Kaneda N., Chen Y.-K. Transmitter and receiver phased array chipset demonstrating 10 Gb/s wireless link // IEEE Journal of Solid-State Circuits. 2013. V. 48. № 5. P. 1113–1125.
- Shahramian S., Holyoak M., Singh A., et al. A fully integrated scalable W-band phased-array module with integrated antennas, self-alignment and self-test // Proc. 2018 IEEE Int. Solid-State Circuits Conference. Р. 74–76.
- Shahramian S., Holyoak M.J., Singh A., Baeyens Y. A fully integrated 384-element, 16-tile, W-band phased array with self-alignment and self-test // IEEE Journal of Solid-State Circuits. 2019. V. 54. № 9. P. 2419–2434.
- Dunworth J., Ku B.-H., Ou Y.-C., et al. 28 GHz phased array transceiver in 28 nm bulk CMOS for 5G prototype user equipment and base stations // Proc. 2018 IEEE/MTT-S Int. Microwave Symposium. P. 1330–1333.
- Sun Y. High density interconnect (HDI) substrate technologies // 2016. 8 July. HKSTP, Hong Kong [Электронный ресурс] / URL: https://appserver.eie.polyu.edu.hk/ITS/docs/w11/ITSworkshop-yfsun2.pdf.
- Pellerano S., Callender S., Shin W., et al. A scalable 71-to-76 GHz 64-element phased-array transceiver module with 2×2 direct-conversion IC in 22 nm FinFET CMOS technology // Proc. 2019 IEEE Int. Solid-State Circuits Conference. P. 174–176.
- Zihir S., Gurbuz O.D., Karroy A., et al. A 60 GHz single-chip 256-element wafer-scale phased array with EIRP of 45 dBm using sub-reticle stitching // Proc. 2015 IEEE Radio Frequency Integrated Circuits Symposium. P. 23–26.
- Zihir S., Gurbuz O.D., Kar-Roy A., et al. 60-GHz 64- and 256-elements wafer-scale phased-array transmitters using full-reticle and subreticle stitching techniques // IEEE Transactions on Microwave Theory Techniques. 2016. V. 64. № 12. Pt. 2. P. 4701–4719.
- Kibaroglu K., Sayginer M., Rebeiz G.M. An ultra low-cost 32-element 28 GHz phased-array transceiver with 41 dBm EIRP and 1.0–1.6 Gbps 16-QAM link at 300 meters // Proc. 2017 IEEE Radio Frequency Integrated Circuits Symposium. P. 73–76.
- Kibaroglu K., Sayginer M., Rebeiz G.M. A low-cost scalable 32-element 28-GHz phased array transceiver for 5G communication links based on a 2×2 beamformer flip-chip unit cell // IEEE Journal of Solid-State Circuits. 2018. V. 53. № 5. P. 1260–1274.
- Kibaroglu K., Sayginer M., Phelps T., Rebeiz G.M. A 64-element 28-GHz phased-array transceiver with 52-dBm EIRP and 8–12-Gb/s 5G link at 300 meters without any calibration // IEEE Transactions on Microwave Theory Techniques. 2018. V. 66. № 12. Pt. 2. P. 5796–5811.
- Carlson D. Breaking through the cost barrier for phased arrays // Microwave Journal. 2018. V. 61. № 11. P. 104–110.
- Carlson D. Tile arrays accelerate the evolution to next-generation radar // Microwave Journal. 2017. V. 60. P. 22–30.
- Добычина Е.М., Кольцов Ю.В. Цифровые антенные решетки и скоростные аналого-цифровые преобразователи. М.: Изд-во МАИ. 2012.
- Добычина Е.М., Кольцов Ю.В. Цифровые антенные решетки в бортовых радиолокационных системах. М.: Изд-во МАИ. 2013.
- MACOM demonstrates their phased array antenna architecture. 2018, June 22 [Электронный ресурс] / URL: https://www.youtube.com/ watch?v=TuKQgqugVys.
- Kim S.-K., Maurer R., Simsek A., et al. An ultra-low-power dual-polarization transceiver front-end for 94-GHz phased arrays in 130-nm InP HBT // IEEE Journal of Solid-State Circuits. 2017. V. 52. № 9. Р. 2267–2276.
- Venkatech S., Lu X., Saeidi H., Sengupta K. A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips // Nature Electronics. 2020. V. 3. № 12. P. 785–793.
- Schweber B. Programmable THz-wave beamforming surface built from CMOS tile array // Electronic Design. 2021. May 10.
- pSemi introduces complete 5G mmWave RFFE solution // Microwave Journal. 2022. February 1.
- Joosting J.-P. pSemi expands 5G mmWave RF front-end portfolio // MWee RF – Microwave. 2022. February 8.
- Matthews P. Building blocks for 28-GHz small cells // Microwave & RF. 2020. V. 59. № 6. P. 24–29.
- Кольцов Ю.В. Метаматериальные технологии антенных решеток // Успехи современной радиоэлектроники. 2017. № 4. С. 30–47.
- Кольцов Ю.В. Новейшие эффекты применения метаматериалов // Успехи современной радиоэлектроники. 2021. Т. 75. № 7. С. 5–26.
- Hindle P. Comprehensive survey of commercial mmWave phased array companies. Focused on SATCOM and 5G applications // Microwave Journal. 2020. January 15.
- Kymeta products [Электронный ресурс] / URL: www.kymetacorp.com/kymeta-products/. 2017. November 25.
- Kymeta resources [Электронный ресурс] / URL: www.kymetacorp.com/why-kymeta-connectivity/. 2017. November 25.
- Спутниковый терминал Kymeta [Электронный ресурс] / URL: https://altegrosky.ru/equipment/terminal-kymeta/.
- Lerude G. Kymeta and Intelsat launch KĀLO mobile Internet service // Microwave Journal. 2017. December 15.
- Kymeta™ u7 Terminal // 700–00037–000–rev03. 2019 [Электронный ресурс] / URL: https://www.marsat.ru/files/partners%20services/ kymeta/kymeta-u7-terminal-product-sheet.pdf.
- Wittek M., Fritzsch C., Schroth D. Employing liquid crystal-based smart antennas for satellite and terrestrial communication // Wiley online library. Information Display. 2021. January–February (February 28). P. 17–22.
- «New» Kymeta u8 terminal with 20 W Ku band BUC and dual band LNB [Электронный ресурс] / URL: https://akd-sat-comm.com/ shop/kymeta-flat-antenna/kymeta-terminal/kymeta-u8-terminal.
- https://www.kymetacorp.com/wp-content/uploads/2020/12/700-00097-000-revE-Kymeta-u8-GEO-terminal-comm-product-sheet.pdf.
- Henry C. Wyler claims breakthrough in low-cost antenna for OneWeb, other satellite systems // SpaceNews. 2019. January 25.
- Kymeta and OneWeb partner to develop flat panel user terminal for LEO network // Microwave Journal. 2021. December 1.
- Echodyne Products. 2017. November 26. [Электронный ресурс] / URL: https://echodyne.com/products/.
- Hogan H. Metamaterials extend photonics // Photonics Spectra. 2020. V. 54. № 3. P. 40–43.
- Echodyne radar selected for Northern Plains' UTM pilot program testing // Microwave Journal. 2019. January 23.
- Martini E., Maci S. Modulated metasurfaces for microwave field manipulation: Models, applications, and design procedures // IEEE Journal of Microwaves. 2022. V. 2. № 1. P. 44–56.
- Checcacci P.F., Russo V., Scheggi A.M. Holographic antennas // IEEE Transactions on Antennas and Propagation. 1970. V. 18. № 6. P. 811–813.
- Johnson M.C., Brunton S.L., Kundtz N.B., Kutz J.N. Sidelobe canceling for reconfigurable holographic metamaterial antenna // IEEE Transactions on Antennas and Propagation. 2015. V. 63. № 4. Pt. 2. P. 1881–1886.
- Clarke P. Bill Gates backs startup to bring holographic beamforming // eeNews Europe Analog. 2017. December 13.
- Black E. Pivotal Commware: Holographic beamforming and MIMO // eeNews Europe Analog. 2017. December 11.
- Black E., Katko A., Ilec-Savoia A. Breaking down mmWave barriers with holographic beam forming // Microwave Journal. 2020. V. 63. № 2. P. 22–34.
- What is holographic beam forming // Pivotal Commware. 2017. [Электронный ресурс] / URL: http://pivotalcommware.com/technology/.
- Holographic beam forming and phased arrays // Pivotal Staff. 2019. [Электронный ресурс] / URL: https://pivotalcommware.com/ wp-content/uploads/2019/10/HBF-vs-APA-White-Paper-2019.pdf.
- Black E.J. Holographic beam forming and MIMO. 2017. [Электронный ресурс] / URL: https://pivotalcommware.com/wp-content/ uploads/2017/12/Holographic-Beamforming-WP-v.6C-FINAL.pdf.
- http://blog.gapwaves.com/what-is-agap-waveguide (2017. November 26); https://www.gapwaves.com/videos/presentations-and-interviews/ (2021. March 10).
- Братчиков А.Н. EBG-материалы (электронные кристаллы) в антенной и СВЧ-технике. М.: Радиотехника. 2009.
- Kildal P.-S., Alfonso E., Valero-Nogueira A., Rajo-Iglesias E. Local metamaterial-based waveguides in gaps between parallel metal plates // IEEE Antennas and Wireless Propagation Letters. 2009. V. 8. Р. 84–87.
- Hindle P. Antenna technologies for the future // Microwave Journal. 2018. V. 61. № 1. P. 24–40.
- Patents by inventor Per-Simon Kildal. 2022. [Электронный ресурс] / URL: https://patents.justia.com/inventor/per-simon-kildal.
- Kildal P.-S. Waveguides and transmission lines in gaps between parallel conducting surfaces // European patent application EP08159791.6. 2008. July 7.
- Bencivenni C., Emanuelsson T., Gustafsson M. Gapwaves Platform integrates 5G mmWave arrays // Microwave Journal. 2019. February 13.
- Interview with Gapwaves CTO about their unique waveguide technology // Microwave Journal. 2020. April 29.
- Alfonso E., Valero A., Herranz J.I., et al. New waveguide technology for antennas and circuits // Waves. 2011. P. 65–74.
- Cohen N. Body-sized wideband high fidelity invisibility cloak // Fractals. 2012. V. 20. № 3–4. P. 227–232.
- Cohen N. Wideband omnidirectional microwave cloaking // Microwave Journal. 2015. V. 15. № 1.
- High frequency and high speed design engineers unite in Boston // Microwave Journal. 2016. October 1.
- Anguera J., Andújar A., Puente C. Antenna-less wireless: A marriage between antenna and microwave engineering // Microwave Journal. 2017. V. 60. № 10.