350 rub
Journal Antennas №5 for 2022 г.
Article in number:
Antenna arrays in the 5G era. Part 1. Designs that have become classics
Type of article: overview article
DOI: https://doi.org/10.18127/j03209601-202205-01
UDC: 621.396.96
Authors:

Yu. V. Koltzov1
1 Nizhegorodskiy Research Instrument Engineering Institute (Nizhny Novgorod, Russia)

Abstract:

Over the past two decades, advances in the telecommunications industry have been driven in large part by the rapidly increasing performance requirements of online applications. Not only actual services are becoming more and more resource intensive (video streaming or over-the-air car software updates), but our digital and multi-screen lifestyle is also fueling this throughput explosion.

Successive generations of mobile communication technologies have been developed and deployed to meet the need for more performance. At the same time, mobile networks are focused on the use of higher frequencies, which provides greater throughput. Case in point: 3G networks operate primarily on the 900 MHz and 2.1 GHz bands, while 4G networks are limited to frequencies up to 2.5 GHz.

Antenna arrays have mastered frequencies of 28 and 39 GHz, 60 and 77 GHz, 94 and 140 GHz and operate at frequencies of hundreds of gigahertz. Ultimately, this leads to an expansion of the operating frequency range towards higher and higher frequencies, a reduction in size and weight, an increase in functionality, and ease of manufacture for the production of large series.

In recent years, many new interesting antenna array technologies have appeared in antenna techniques, such as scalable, metamaterial, fractal, holographic and gap-waveguide using the latest technologies.

This solves many of the problems that traditional antenna technologies have not been able to overcome and have prevented the creation of new antenna shapes and applications that are not even possible with traditional antenna array technology. Unique new approaches will solve a wide range of challenges faced today in 5G applications, as well as satellite communications and radar.

The paper considers the principles of construction of various antenna arrays, their areas of application and technology features. Analysis of the features of the construction of antenna arrays, ranging from miniature to large aperture, has been given, which indicates a wide range of applications for antenna arrays: for ground, air, space and marine applications, as well as for industrial and medical applications. The presented results form the basis for a wide industrial production of the most modern antenna arrays.

Pages: 5-29
For citation

Koltzov Yu.V. Antenna arrays in the 5G era. Part 1. Designs that have become classics. Antennas. 2022. № 5. P. 5–29. DOI: https://doi.org/10.18127/j03209601-202205-01 (in Russian)

References
  1. Nawaz A.A., Khan W.T., Ulusoy A.C. Organically packaged components and modules. IEEE Microwave Magazine. 2019. V. 20. № 11. P. 49–72.
  2. Flaherty N. Boom for SiP design tools. eeNews Europe. 2022. January 17.
  3. Gu X., Liu D., Baks C., et al. A multilayer organic package with 64 dual-polarized antennas for 28 GHz 5G communication. Proc. 2017 IEEE MTT-S Int. Microwave Symposium. P. 1899–1901.
  4. Gu X., Valdes-Garcia A., Natarajan A., et al. W-band scalable phased arrays for imaging and communications. IEEE Communications Magazine. 2015. V. 53. № 4. P. 196–204.
  5. Sadhu P., Gu X., Valdes-Garsia A. The more (antennas), the merrier. IEEE Microwave Magazine. 2019. V. 20. № 12. P. 32–50.
  6. Gu X., Liu D., Baks C., et al. Development, implementation, and characterization of a 64-element dual-polarized phased-array antenna module for 28-GHz high-speed data communications. IEEE Transactions on Microwave Theory Techniques. 2019. V. 67. № 7. P. 2975–2984.
  7. Valdes-Garcia A., Natarajan A., Liu D., et al. A fully-integrated dual-polarization 16-element W-band phased-array transceiver in SiGe BiCMOS. 2013 IEEE Radio Frequency Integrated Circuits Symposium. P. 375–378.
  8. Gu X., Liu D., Baks C., et al. A compact 4-chip package with 64 embedded dual polarization antennas for W-band phased-array transceivers. Proc. 2014 IEEE 64th Electronic Components and Technology Conf. P. 1272–1277.
  9. Sokol I. Integrated circuit tackles mobile communications issues. Microwaves & RF. 2013. V. 52. № 8. P. 21.
  10. Sadhu B., Tousi Y., Hallin J., et al. A 28 GHz 32-element phased-array transceiver IC with concurrent dual polarized beams and 1.4 degree beamsteering resolution for 5G communication. Proc. 2017 IEEE Solid-State Circuits Conference. P. 128–129.
  11. Gu X., Liu D., Baks C., et al. An enhanced 64-element dual-polarization antenna array package for W-band communication and imaging applications. Proc. 2018 IEEE 68th Electronic Components and Technology Conference. P. 197–201.
  12. IBM and Ericsson announce 5G mmWave phased array antenna module. Microwave Journal. 2017. February 7.
  13. Gu X., Liu D., Baks C., Tageman O. Development, implementation, and characterization of a 64-element dual-polarized phased-array antenna module for 28-GHz high-speed data communications. IEEE Transactions on Microwave Theory Techniques. 2019. V. 67. № 7. Pt. 2. P. 2975–2984.
  14. Sadhu B., Tousi Y., Hallin J., et al. A 28-GHz 32-element TRx phased-array IC with concurrent dual-polarized operation and orthogonal phase and gain control for 5G communications. IEEE Journal of Solid-State Circuits. 2017. V. 52. № 12. P. 3373–3391.
  15. Lee W., Plouchart J.-O., Ozdag C., et al. Fully integrated 94-GHz dual-polarized Tx and Rx phased array chipset in SiGe BiCMOS operating up to 105°C. IEEE Journal of Solid-State Circuits. 2018. V. 53. № 9. P. 2512–2531.
  16. Shin W., Ku B.H., Inac O., et al. A 108-114 GHz 4×4 wafer-scale phased array transmitter with high-efficiency on-chip antennas. IEEE Journal of Solid-State Circuits. 2013. V. 48. № 9. P. 2041–2055.
  17. Sowlati T., Sarkar S., Kodavati V., et al. A 60 GHz 144-element phased-array transceiver with 51 dBm maximum EIRP and ±60° beam steering for backhaul application. Proc. 2018 IEEE Int. Solid-State Circuits Conference. Feb. 2018. P. 66–68.
  18. Sowlati T., Sarkar S., Perumana B.G., et al. A 60-GHz 144-element phased-array transceiver for backhaul application. IEEE Journal of Solid-State Circuits. 2018. V. 53. № 12. P. 3640–3659.
  19. Shahramian S., Baeyens Y., Kaneda N., Chen Y.-K. Transmitter and receiver phased array chipset demonstrating 10 Gb/s wireless link. IEEE Journal of Solid-State Circuits. 2013. V. 48. № 5. P. 1113–1125.
  20. Shahramian S., Holyoak M., Singh A., et al. A fully integrated scalable W-band phased-array module with integrated antennas, self-alignment and self-test. Proc. 2018 IEEE Int. Solid-State Circuits Conference. P. 74–76.
  21. Shahramian S., Holyoak M.J., Singh A., Baeyens Y. A fully integrated 384-element, 16-tile, W-band phased array with self-alignment and self-test. IEEE Journal of Solid-State Circuits. 2019. V. 54. № 9. P. 2419–2434.
  22. Dunworth J., Ku B.-H., Ou Y.-C., et al. 28 GHz phased array transceiver in 28 nm bulk CMOS for 5G prototype user equipment and base stations. Proc. 2018 IEEE/MTT-S Int. Microwave Symposium. P. 1330–1333.
  23. Sun Y. High density interconnect (HDI) substrate technologies. 2016. 8 July. HKSTP, Hong Kong [Elektronnyj resurs]. URL: https://appserver. eie.polyu.edu.hk/ITS/docs/w11/ITSworkshop-yfsun2.pdf.
  24. Pellerano S., Callender S., Shin W., et al. A scalable 71-to-76 GHz 64-element phased-array transceiver module with 2×2 direct-conversion IC in 22 nm FinFET CMOS technology. Proc. 2019 IEEE Int. Solid-State Circuits Conference. P. 174–176.
  25. Zihir S., Gurbuz O.D., Karroy A., et al. A 60 GHz single-chip 256-element wafer-scale phased array with EIRP of 45 dBm using sub-reticle stitching. Proc. 2015 IEEE Radio Frequency Integrated Circuits Symposium. P. 23–26.
  26. Zihir S., Gurbuz O.D., Kar-Roy A., et al. 60-GHz 64- and 256-elements wafer-scale phased-array transmitters using full-reticle and subreticle stitching techniques. IEEE Transactions on Microwave Theory Techniques. 2016. V. 64. № 12. Pt. 2. P. 4701–4719.
  27. Kibaroglu K., Sayginer M., Rebeiz G.M. An ultra low-cost 32-element 28 GHz phased-array transceiver with 41 dBm EIRP and 1.0–1.6 Gbps 16-QAM link at 300 meters. Proc. 2017 IEEE Radio Frequency Integrated Circuits Symposium. P. 73–76.
  28. Kibaroglu K., Sayginer M., Rebeiz G.M. A low-cost scalable 32-element 28-GHz phased array transceiver for 5G communication links based on a 2×2 beamformer flip-chip unit cell. IEEE Journal of Solid-State Circuits. 2018. V. 53. № 5. P. 1260–1274.
  29. Kibaroglu K., Sayginer M., Phelps T., Rebeiz G.M. A 64-element 28-GHz phased-array transceiver with 52-dBm EIRP and 8–12-Gb/s 5G link at 300 meters without any calibration. IEEE Transactions on Microwave Theory Techniques. 2018. V. 66. № 12. Pt. 2. P. 5796–5811.
  30. Carlson D. Breaking through the cost barrier for phased arrays. Microwave Journal. 2018. V. 61. № 11. P. 104–110.
  31. Carlson D. Tile arrays accelerate the evolution to next-generation radar. Microwave Journal. 2017. V. 60. P. 22–30.
  32. Dobychina E.M., Kol'tsov Yu.V. Tsifrovye antennye reshetki i skorostnye analogo-tsifrovye preobrazovateli. M.: Izd-vo MAI. 2012. (in Russian)
  33. Dobychina E.M., Kol'tsov Yu.V. Tsifrovye antennye reshetki v bortovykh radiolokatsionnykh sistemakh. M.: Izd-vo MAI. 2013. (in Russian)
  34. MACOM demonstrates their phased array antenna architecture. 2018, June 22 [Elektronnyj resurs]. URL: https://www.youtube.com/ watch?v=TuKQgqugVys.
  35. Kim S.-K., Maurer R., Simsek A., et al. An ultra-low-power dual-polarization transceiver front-end for 94-GHz phased arrays in 130-nm InP HBT. IEEE Journal of Solid-State Circuits. 2017. V. 52. № 9. R. 2267–2276.
  36. Venkatech S., Lu X., Saeidi H., Sengupta K. A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips. Nature Electronics. 2020. V. 3. № 12. P. 785–793.
  37. Schweber B. Programmable THz-wave beamforming surface built from CMOS tile array. Electronic Design. 2021. May 10.
  38. pSemi introduces complete 5G mmWave RFFE solution. Microwave Journal. 2022. February 1.
  39. Joosting J.-P. pSemi expands 5G mmWave RF front-end portfolio. MWee RF – Microwave. 2022. February 8.
  40. Matthews P. Building blocks for 28-GHz small cells. Microwave & RF. 2020. V. 59. № 6. P. 24–29.
  41. Kol'tsov Yu.V. Metamaterial'nye tekhnologii antennykh reshetok. Uspekhi sovremennoj radioelektroniki. 2017. № 4. S. 30–47. (in Russian)
  42. Kol'tsov Yu.V. Novejshie effekty primeneniya metamaterialov. Uspekhi sovremennoj radioelektroniki. 2021. T. 75. № 7. S. 5–26. (in Russian)
  43. Hindle P. Comprehensive survey of commercial mmWave phased array companies. Focused on SATCOM and 5G applications. Microwave Journal. 2020. January 15.
  44. Kymeta products [Elektronnyj resurs]. URL: www.kymetacorp.com/kymeta-products/. 2017. November 25.
  45. Kymeta resources [Elektronnyj resurs]. URL: www.kymetacorp.com/why-kymeta-connectivity/. 2017. November 25.
  46. Sputnikovyj terminal Kymeta [Elektronnyj resurs]. URL: https://altegrosky.ru/equipment/terminal-kymeta/.
  47. Lerude G. Kymeta and Intelsat launch KĀLO mobile Internet service. Microwave Journal. 2017. December 15.
  48. Kymeta™ u7 Terminal. 700–00037–000–rev03. 2019 [Elektronnyj resurs]. URL: https://www.marsat.ru/files/partners%20services/kymeta/ kymeta-u7-terminal-product-sheet.pdf.
  49. Wittek M., Fritzsch C., Schroth D. Employing liquid crystal-based smart antennas for satellite and terrestrial communication. Wiley online library. Information Display. 2021. January–February (February 28). P. 17–22.
  50. «New» Kymeta u8 terminal with 20 W Ku band BUC and dual band LNB [Elektronnyj resurs]. URL: https://akd-sat-comm.com/shop/ kymeta-flat-antenna/kymeta-terminal/kymeta-u8-terminal.
  51. https://www.kymetacorp.com/wp-content/uploads/2020/12/700-00097-000-revE-Kymeta-u8-GEO-terminal-comm-product-sheet.pdf.
  52. Henry C. Wyler claims breakthrough in low-cost antenna for OneWeb, other satellite systems. SpaceNews. 2019. January 25.
  53. Kymeta and OneWeb partner to develop flat panel user terminal for LEO network. Microwave Journal. 2021. December 1.
  54. Echodyne Products. 2017. November 26. [Elektronnyj resurs]. URL: https://echodyne.com/products/.
  55. Hogan H. Metamaterials extend photonics. Photonics Spectra. 2020. V. 54. № 3. P. 40–43.
  56. Echodyne radar selected for Northern Plains' UTM pilot program testing. Microwave Journal. 2019. January 23.
  57. Martini E., Maci S. Modulated metasurfaces for microwave field manipulation: Models, applications, and design procedures. IEEE Journal of Microwaves. 2022. V. 2. № 1. P. 44–56.
  58. Checcacci P.F., Russo V., Scheggi A.M. Holographic antennas. IEEE Transactions on Antennas and Propagation. 1970. V. 18. № 6. P. 811–813.
  59. Johnson M.C., Brunton S.L., Kundtz N.B., Kutz J.N. Sidelobe canceling for reconfigurable holographic metamaterial antenna. IEEE Transactions on Antennas and Propagation. 2015. V. 63. № 4. Pt. 2. P. 1881–1886.
  60. Clarke P. Bill Gates backs startup to bring holographic beamforming. eeNews Europe Analog. 2017. December 13.
  61. Black E. Pivotal Commware: Holographic beamforming and MIMO. eeNews Europe Analog. 2017. December 11.
  62. Black E., Katko A., Ilec-Savoia A. Breaking down mmWave barriers with holographic beam forming. Microwave Journal. 2020. V. 63. № 2. P. 22–34.
  63. What is holographic beam forming. Pivotal Commware. 2017. [Elektronnyj resurs]. URL: http://pivotalcommware.com/technology/.
  64. Holographic beam forming and phased arrays. Pivotal Staff. 2019. [Elektronnyj resurs]. URL: https://pivotalcommware.com/wp-content/ uploads/2019/10/HBF-vs-APA-White-Paper-2019.pdf.
  65. Black E.J. Holographic beam forming and MIMO. 2017. [Elektronnyj resurs]. URL: https://pivotalcommware.com/wp-content/uploads/2017/12/ Holographic-Beamforming-WP-v.6C-FINAL.pdf.
  66. http://blog.gapwaves.com/what-is-agap-waveguide (2017. November 26); https://www.gapwaves.com/videos/presentations-and-inter­views/ (2021. March 10).
  67. Bratchikov A.N. EBG-materialy (elektronnye kristally) v antennoj i SVCh-tekhnike. M.: Radiotekhnika. 2009. (in Russian)
  68. Kildal P.-S., Alfonso E., Valero-Nogueira A., Rajo-Iglesias E. Local metamaterial-based waveguides in gaps between parallel metal plates. IEEE Antennas and Wireless Propagation Letters. 2009. V. 8. R. 84–87.
  69. Hindle P. Antenna technologies for the future. Microwave Journal. 2018. V. 61. № 1. P. 24–40.
  70. Patents by inventor Per-Simon Kildal. 2022. [Elektronnyj resurs]. URL: https://patents.justia.com/inventor/per-simon-kildal.
  71. Kildal P.-S. Waveguides and transmission lines in gaps between parallel conducting surfaces. European patent application EP08159791.6. 2008. July 7.
  72. Bencivenni C., Emanuelsson T., Gustafsson M. Gapwaves Platform integrates 5G mmWave arrays. Microwave Journal. 2019. February 13.
  73. Interview with Gapwaves CTO about their unique waveguide technology. Microwave Journal. 2020. April 29.
  74. Alfonso E., Valero A., Herranz J.I., et al. New waveguide technology for antennas and circuits. Waves. 2011. P. 65–74.
  75. Cohen N. Body-sized wideband high fidelity invisibility cloak. Fractals. 2012. V. 20. № 3–4. P. 227–232.
  76. Cohen N. Wideband omnidirectional microwave cloaking. Microwave Journal. 2015. V. 15. № 1.
  77. High frequency and high speed design engineers unite in Boston. Microwave Journal. 216. October 1.
  78. Anguera J., Andújar A., Puente C. Antenna-less wireless: A marriage between antenna and microwave engineering. Microwave Journal. 2017. V. 60. № 10.
Date of receipt: 14.03.2022
Approved after review: 28.03.2022
Accepted for publication: 26.09.2022