350 руб
Журнал «Технологии живых систем» №4 за 2024 г.
Статья в номере:
Характеристика Pichia pastoris (Komagataella phaffii) как экспрессионной системы для биотехнологического производства
Тип статьи: обзорная статья
DOI: 10.18127/j20700997-202404-12
УДК: 602.3:579.8
Авторы:

Е.И. Антонова1, Н.В. Фирсова2, Н.А. Ленгесова3

1–3 Научно-исследовательский центр фундаментальных и прикладных проблем биоэкологии и биотехнологии ФГБОУ ВО «Ульяновский государственный педагогический университет им. И.Н. Ульянова» (г. Ульяновск, Россия)

1 antonov_67@mail.ru, 2 n-firsova@mail.ru, 3 lengesova@yandex.ru

Аннотация:

Постановка проблемы. Для эффективного производства целевых белков доступны различные системы экспрессии, включая прокариотические, эукариотические и системы млекопитающих. Pichia pastoris (теперь Komagataella phaffii) является наиболее широко используемой экспрессионной системой в области генной инженерии как более эффективная система экспрессии целевого белка. Широкая сфера практического применения P. pastoris в качестве экспрессионной системы определяет необходимость более глубокого морфофункционального, генетического и филогенетического анализа данной группы микроорганизмов.

Цель работы – проведение ретроспективного мета- и библиометрического анализа в формате «scoping review» (аналитический обзор) опубликованных экспериментальных и фундаментальных исследований относительно истории использования в качестве экспрессионной системы, таксономического положения, организации генома, метаболизма метилотрофных дрожжей P.pastoris (Komagataella phaffii) в сравнении с другими системами экспрессии и сферы практического применения.

Результаты. Представлены систематизированные данные биологии метилотрофных дрожжей P.pastoris (Komagataella phaffii). В частности, рассмотрено филогенетическое положение микроорганизма, использование P.pastoris в качестве организма-продуцента рекомбинантных белков в процессе биотехнологического производства, представлены все виды штаммов и детальный анализ организации генома, а также промоторов и плазмид. Рассмотрены метаболические пути P.pastoris.

Практическая значимость. Данный обзор представляет собой системный и глубокий анализ биологии P.pastoris (Komagataella phaffii) как для области фундаментальных, так и для сферы практического применения информации, изложенной в статье. Обзор включает в себя новые данные биологии P.pastoris (Komagataella phaffii), дает возможность получить развернутое и систематизированное представление по данному вопросу, поскольку одной из главных задач современного исследователя является поиск релевантной информации, обладающей научной ценностью.

Страницы: 112-129
Для цитирования

Антонова Е.И., Фирсова Н.В., Ленгесова Н.А. Характеристика Pichia pastoris (Komagataella phaffii) как экспрессионной системы для биотехнологического производства // Технологии живых систем. 2024. T. 21. № 4. С. 112-129. DOI: https://doi.org/10.18127/ j20700997-202404-12

Список источников
  1. Karbalaei M., Rezaee S.A., Farsiani H. Pichia pastoris: a highly successful expression system for optimal synthesis of heterologous proteins // Journal of Cellular Physiology. 2020. V. 235(9). P. 5867–5881. DOI: 10.1002/jcp.29583
  2. Bernauer L., Radkohl A., Lehmayer L.G.K., Emmerstorfer-Augustin A. Komagataella phafi as emerging model organism in fundamental research // Frontiers in microbiology. 2021. V. 11. P. 1–16. DOI: 10.3389/fmicb.2020.607028
  3. Goffeau A., Barrell B.G., Bussey H., Davis R.W., Dujon B., Feldmann H., Galibert F., Hoheisel J.D., Jacq C., Johnston M., Louis E.J., Mewes H.W., Murakami Y., Philippsen P., Tettelin H., Oliver S.G. Life with 6000 genes // Science. 1996. V. 274. P. 546–567. DOI: 10.1126/science.274.5287.546
  4. Tran A.M., Nguyen T.T., Nguyen C.T., Huynh-Thi X.M., Nguyen C.T., Trinh M.T., Tran L.-T., Cartwright S.P., Bill R.M., Tran-Van H. Pichia pastoris versus Saccharomyces cerevisiae: A case study on the recombinant production of human granulocyte-macrophage colony-stimulating factor // BMC Research Notes. 2017. V. 10(1). P. 6–13. DOI: 10.1186/ s13104-017-2471-6
  5. Vijayakumar V.E., Venkataraman K. A. Systematic review of the potential of Pichia pastoris (Komagataella phaffii) as an alternative host for biologics production // Molecular Biotechnology. 2024. V. 66. P. 1621–1639. DOI: 10.1007/s12033-023-00803-1
  6. Ergun B.G., Lacın K., Caloğlu B., Binay B. Second generation Pichia pastoris strain and bioprocess designs // Biotechnology for biofuels and bioproducts. 2022. V. 15. P. 150. DOI: 10.1186/s13068-022-02234-7
  7. Zhu T.C., Sun H.B., Wang M.Y., Li Y. Pichia pastoris as a versatile cell factory for the production of industrial enzymes and chemicals: Current status and future perspectives // Journal of Biotechnology. 2019. V. 14. P. e1800694. DOI: 10.1002/biot.201800694
  8. Pan Y., Yang J., Wu J., Yang L., Fang H. Current advances of Pichia pastoris as cell factories for production of recombinant proteins // Frontiers in Microbiology. 2022. V. 13. P. 1059777. DOI: 10.3389/fmicb.2022.1059777
  9. Schwarzhans J.P., Luttermann T., Geier M., Kalinowski J., Friehs K. Towards systems metabolic engineering in Pichia pastoris // Biotechnology Advances. 2017. V. 35. P. 681–710. DOI: 10.1016/j.biotechadv.2017.07.009
  10. Guilliermond A. Zygosaccharomyces pastori, nouvelle esp`ece de levures copulation hґ et ґerogamique // Bulletin de la Societe chimique de France. 1920. V. 36. P. 203–211. DOI: 10.1007/ s11274-021-03066-7
  11. Zahrl R.J., Pen˜a D.A., Mattanovich D., Gasser B. Systems biotechnology for protein production in Pichia pastoris // FEMS Yeast Research. 2017. V. 17. № 7. DOI: 10.1093/femsyr/fox068
  12. Phaff H.J., Miller M.W., Shifrine M. The taxonomy of yeasts isolated from drosophila in the yosemite region of California // Antonie Van Leeuwenhoek. 1956. V. 22. P. 145–161. DOI: 10.1007/BF02538322
  13. Heistinger L., Gasser B., Mattanovich D. Microbe Profile: Komagataella phaffii: a methanol devouring biotech yeast formerly known as Pichia pastoris // Microbiology. 2020. V. 166. P. 614–616. DOI: 10.1099/mic.0.000958
  14. Yamada Y., Matsuda M., Maeda K., Mikata K. The phylogenetic relationships of methanol-assimilating yeasts based on the partial sequences of 18S and 26S ribosomal RNAs: the proposal of Komagataella gen. nov. (Saccharomycetaceae) // Bioscience, Biotechnology, and Biochemistry. 1995. V. 59. P. 439–444. DOI: 10.1271/bbb.59.439
  15. Naumov G.I., Naumova E.S., Boundy‐Mills K.L. Description of Komagataella mondaviorum sp. nov., a new sibling species of Komagataella (Pichia) pastoris // Antonie Van Leeuwenhoek. 2018. V. 111. P. 1–11. DOI: 10.1007/s10482-018-1028-6
  16. Kurtzman C.P. Description of Komagataella phaffii sp. nov. and the transfer of Pichia pseudopastoris to the methylotrophic yeast genus Komagataella // International Journal of Systematic and Evolutionary Microbiology. 2005. V. 55. P. 973–976. DOI: 10.1099/ijs.0.63491-0
  17. Naumov G.I., Naumova E.S., Tyurin O.V., Kozlov D.G. Komagataella kurtzmanii sp. nov., a new sibling species of Komagataella (Pichia) pastoris based on multigene sequence analysis // Antonie Van Leeuwenhoek. 2013. V. 104(3). P. 339–347. DOI: 10.1007/s10482-013-9956-7
  18. Riley R., Haridas S., Wolfe K.H., Lopes M.R., Hittinger C.T., Göker M., Salamov A.A., Wisecaver J.H., Long T.M., Calvey C.H., Aerts A.L., Barry K.W., Choi C., Clum A., Coughlan A.Y., Deshpande S., Douglass A.P., Hanson S.J., Klenk H.P., LaButti K.M., Lapidus A., Lindquist E.A., Lipzen A.M., Meier-Kolthoff J.P., Ohm R.A., Otillar R.P., Pangilinan J.L., Peng Y., Rokas A., Rosa C.A., Scheuner C., Sibirny A.A., Slot J.C., Stielow J.B., Sun H., Kurtzman C.P., Blackwell M., Grigoriev I.V., Jeffries T.W. Comparative genomics of biotechnologically important yeasts // Proceedings of the National Academy of Sciences. 2016. V. 113(35). P. 9882–9887. DOI: 10.1073/pnas.1603941113
  19. Shen X.X., Opulente D.A., Kominek J., Zhou X., Steenwyk J.L., Buh K.V., Haase M.A.B., Wisecaver J.H., Wang M., Doering D.T., Boudouris J.T., Schneider R.M., Langdon Q.K., Ohkuma M., Endoh R., Takashima M., Manabe R.I., Čadež N., Libkind D., Rosa C.A., DeVirgilio J., Hulfachor A.B., Groenewald M., Kurtzman C.P., Hittinger C.T., Rokas A. Tempo and mode of genome evolution in the budding yeast subphylum // Cell. 2018. V. 175(6). P. 1533–1545. DOI: 10.1016/j.cell.2018.10.023
  20. Love K.R., Shah K.A., Whittaker C.A., Wu J., Bartlett M.C., Ma D., Leeson R.L., Priest M., Borowsky J., Young S.K., Love J.C. Comparative genomics and transcriptomics of Pichia pastoris // BMC Genomics. 2016. V. 17(1). P. 1–17. DOI: 10.1186/s12864-016-2876-y
  21. Cregg J.M., Barringer K.J., Hessler A., Madden Y.K.R. Pichia-pastoris as a host system for transformations // Molecular and Cellular Biology. 1985. V. 5. P. 3376–3385. DOI: 10.1128/mcb.5.12.3376-3385.1985
  22. Cereghino G.P.L., Cereghino J.L., Ilgen C., Cregg J.M. Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris // Current Opinion in Biotechnology. 2002. 13. P. 329–332. DOI: 10.1016/s0958-1669(02)00330-0
  23. Barone G.D., Emmerstorfer-Augustin A., Biundo A., Pisano I., Coccetti P., Mapelli V., Camattari A. (). Industrial production of proteins with Pichia pastoris—Komagataella phaffi // Biomolecules. 2023. V. 13(3). P. 441. DOI: 10.3390/biom130304 41
  24. Беклемишев А.Б., Пыхтина М.Б., Куликов Я.М., Горячковская Т.Н., Бочков Д.В., Сергеева С.В., Васильева А.Р., Романов В.П., Новикова Д.С., Пельтек С.Е. Получение рекомбинантного штамма Komagataella phaffii – продуцента протеиназы К из Tritirachium album // Вавиловский журнал генетики и селекции. 2021. Т. 25. № 8. С. 882–888. DOI: 10.18699/VJ21.102
  25. Balabova D.V., Rudometov A.P., Belenkaya S.V., Belov A.N., Koval A.D., Bondar A.A., Bakulina A.Yu., Rukhlova E.A., Elchaninov V.V., Shcherbakov D.N. Biochemical and technological properties of moose (Alces alces) recombinant chymosin // Vavilovskii Zhurnal Genet. I Sel. (Vavilov. J. Genet. Breed.). 2022. V. 26. P. 240–249. DOI: 10.18699/VJGB-22-31
  26. Филькин С.Ю., Чертова Н.В., Вавилова Е.А., Зацепин С.С., Эльдаров М.А., Садыхов Э.Г., Фёдоров А.Н., Липкин А.В. Оптимизация метода получения рекомбинантного химозина в метилотрофных дрожжах Komagataella phaffii // Прикладная биохимия и микробиология. 2020. Т. 56. № 6. С. 571–576. DOI: 10.31857/S0555109920060057
  27. Бытяк Д.С., Корнеева О.С., Мотина Е.А. Разработка стратегии индукции АОХ1 промотора при культивировании метилотрофных дрожжей Komagataella phaffii // Вестник ВГУИТ. 2021. Т. 83. № 1. С. 115–120. DOI: 10.20914/2310-1202-2021-1-115-120
  28. National Center for Biotechnology Information. PubChem Patent Summary for US-4414329-A, Biochemical conversions by yeast fermentation at high cell densities. https://pubchem.ncbi.nlm.nih.gov/patent/US-4414329-A. Accessed Aug. 16, 2024.
  29. Wegner G.H. Emerging applications of the methylotrophic yeasts // FEMS microbiology letters. 1990. V. 87. P. 279–284. DOI: 10.1111/j.1574-6968.1990.tb04925.x
  30. Wang N., Wangb K.Y., Li G.Q., Guo W.F., Liu D.H. Expression and characterization of camel chymosin in Pichia pastoris // Protein Expression and Purification. 2015. P. 75–81. DOI: 10.1016/j.pep.2015.03.012
  31. Krainer F.W., Darnhofer B., Birner-Gruenberger R., Glieder A. Recombinant production of a peroxidase-protein G fusion protein in Pichia pastoris // Journal of Biotechnology. 2016. V. 219. P. 24–27. DOI: 10.1016/j.jbiotec.2015.12.020
  32. Arias C.A.D., Marques D.V., Malpiedi L.P., Maranhão A.Q., Parra D.A.S., Converti A. Cultivation of Pichia pastoris carrying the scFv anti LDL (−) antibody fragment. Effect of preculture carbon source // Biotechnology and Industrial Microbiology. 2017. V. 48. Iss. 3. P. 419–426. DOI: 10.1016/j.bjm.2016.11.009
  33. Filkin S.Y., Chertova N.V., Zenin V.A., Lipkin A.V., Sichev A.A., Bityak D.S., Sadykhov E.G., Popov V.O., Fedorov A.N. Expression, purification and biophysical characterization of recombinant Streptomyces violaceoruber phospholipase PLA2 overproduced in Pichia pastoris // Preparative biochemistry & biotechnology. 2020. V. 50. № 6. P. 549–555. DOI: 10.1080/10826068.2020.1712657
  34. Krainer F.W., Dietzsch C., Hajek T., Herwig C., Spadiut O., Glieder A. Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway // Microbial Cell Factories. 2012. V. 11. P. 22. DOI: 10.1186/1475-2859-11-22
  35. Akishev Z., Kiribayeva A., Mussakhmetov A., Baltin K., Ramankulov Y., Khassenov B. Constitutive expression of Camelus bactrianus prochymosin B in Pichia pastoris. // Heliyon. 2021. V. 7. P. e07137. DOI: 10.1016/j.heliyon.2021.e07137
  36. Darby R.A., Cartwright S.P., Dilworth M.V., Bill R.M. Yeast species shall i choose? Saccharomyces cerevisiae versus Pichia pastoris (Review) // Recombinant protein production in Yeast: methods and protocols, methods in molecular biology. 2012. V. 866. P. 11–23. DOI: 10.1007/978-1-61779-770-5_2
  37. Cregg J.M., Cereghino J.L., Shi J.Y., Higgins D.R. Recombinant protein expression in Pichia pastoris // Molecular Biotechnology. 2000. V. 16. P. 23–52. DOI: 10.1385/MB:16:1:23
  38. Luo H.Y., Yao B., Yuan T.Z., Wang Y.R., Shi X.Y., Wu N.F., Fan Y.L. Overexpression of Escherchia coli phytase with high specific activity. Sheng Wu Gong Cheng Xue Bao = Chinese journal of biotechnology. 2004. V. 20. P. 78–84
  39. Huang H., Luo H., Yang P., Meng K., Wang Y., Yuan T., Bai Y., Yao B. A novel phytase with preferable characteristics from Yersinia intermedia // Biochemical and Biophysical Research Communications. 2006. V. 350. P. 884–889. DOI: 10.1007/s00253-008-1556-5
  40. Xiong A.S., Yao Q.H., Peng R.H., Zhang Z., Xu F., Liu J.G., Han P.L., Chen J.M. High level expression of a synthetic gene encoding Peniophora lycii phytase in methylotrophic yeast Pichiapastoris // Applied Microbiology and Biotechnology. 2006. V. 72. P. 1039–1047. DOI: 10.1007/s00253-006-0384-8
  41. Pal Roy M., Mazumdar D., Dutta S., Saha S.P., Ghosh S. Cloning and expression of phytase appA gene from Shigella sp. CD2 in Pichia pastoris and comparison of properties with recombinant enzyme expressed in E. coli // PLoS One. 2016. V. 11. P. e0145745. DOI: 10.1371/journal.pone.0145745
  42. Zhao W., Xiong A., Fu X., Gao F., Tian Y., Peng R. High level expression of an acidstable phytase from Citrobacter freundii in Pichia pastoris // Applied biochemistry and biotechnology. 2010. 162. P. 2157–2165. DOI: 10.1007/s12010-010-8990-4
  43. Филькин С.Ю., Чертова Н.В., Зацепин С.С., Садыхов Э.Г., Фёдоров А.Н., Липкин А.В. Получение химозина белухи (Delphinapterus leucas) в метилотрофных дрожжах Komagataella phaffii и характеристика рекомбинантного фермента // Прикладная биохимия и микробиология. 2021. Т. 57. № 3. С. 228–234. DOI: 10.31857/S0555109921030028
  44. Антонова Е.И., Аббязова А.Н., Фирсова Н.В., Ачилов А.Б., Викторов Д.А., Ленгесова Н.А. Генетические конструкции как источник получения рекомбинантного химозина // Фундаментальные и прикладные исследования по приоритетным направлениям биоэкологии и биотехнологии: Материалы VII Всерос. науч.-практич. конф. с международным участием. Чебоксары: ИД «Среда». 2024. С. 49–55. DOI: 10.31483/r-112097
  45. Noseda D.G., Recupero M., Blasco M., Bozzo J., Galvagno. M.A. Production in stirred-tank bioreactor of recombinant bovine chymosin B by a high-level expression transformant clone of Pichia pastoris // Protein expression and purification. 2016. V. 123.
    P. 112–121. DOI: 10.1016/j.pep.2016.03.008
  46. Abramczyk D., Olmos M.C.S., Rojas A.A.R., Schindler D., Robertson D., McColm S., Marston A.L., Barlow P.N. A supernumerary synthetic chromosome in Komagataella phaffii as a repository for extraneous genetic material // Microbial Cell Factories. 2023. V. 22(1). P. 259. DOI: 10.1186/s12934-023-02262-4
  47. Belenkaya S.V., Balabova D.V., Belov A.N., Koval A., Shcherbakov D., Elchaninov V. Basic biochemical properties of recombinant chymosins (Review) // Applied biochemistry and microbiology. 2020. V. 56(4). P. 315–326. DOI: 10.1134/S0003683820040031
  48. Rogelj I., Perko B., Francky A., Penca V., Purgenˇcar J. Recombinant Lamb Chymosin as an Alternative Coagulating Enzyme in Cheese Production // Journal of Dairy Science. 2001. V. 84. P. 1020–1026. DOI: 10.3168/jds.S0022-0302(01)74561-4
  49. Vega-Hernández M.C., A. Gomez-Coello, J. Villar, F. Claverie-Martin. Molecular cloning and expression in yeast of caprine prochymosin // Journal of Biotechnology. 2004. V. 114. P. 69–79. DOI: 10.1016/j.jbiotec.2004.06.002
  50. Vallejo J.A., Ageitos J.M., Poza M., Villa T.G. Cloning and expression of buffalo active chymosin in Pichia pastoris // Journal of Agricultural and Food Chemistry. 2008. V. 56. P. 10606– 10610. DOI: 10.1021/jf802339e
  51. Balabova D.V., Belenkaya S.V., Volosnikova E.A., Hermes T., Chirkova V., Sharlaeva E., Shcherbakov D., Belov A., Koval A., Elchaninov V. Can recombinant tree shrew (Tupaia belangeri chinensis) chymosin coagulate cow (Bos taurus) milk? // Applied Biochemistry and Microbiology. 2022. V. 58. P. 763–772. DOI: 10.1134/S0003683822060023
  52. Belenkaya S.V., Rudometov A.P., Shcherbakov D.N., Balabova D.V., Kriger A.V., Belov A.N., Koval A.D., Elchaninov V.V. Biochemical properties of recombinant chymosin in alpaca (Vicugna pacos L.) // Applied Biochemistry and Microbiology. 2018. V. 54(6). P. 569–576. DOI: 10.1134/S000 3683818060054
  53. Belenkaya S.V., Bondar A.A., Kurgina T.A., Elchaninov V., Bakulina A., Rukhlova E., Lavrik O., Ilyichev A., Shcherbakov D. Characterization of the altai maral chymosin gene, production of a chymosin recombinant analog in the prokaryotic expression system, and analysis of its several biochemical properties // Biochemistry. 2020. V. 85. P. 781–791. DOI: 10.1134/S0006297920070068
  54. Elchaninov V.V., Shcherbakov D.N. Development of a producer of recombinant maral chymosin based on the yeast Kluyveromyces lactis // Biotechnology. 2021. V. 37. P. 20–27. DOI: 10.21519/0234-2758-2021-37-5-20-27
  55. Беленькая С., Чиркова В., Шарлаева Е., Ельчанинов В., Щербаков Д. Параметры ферментативной кинетики рекомбинантного химозина алтайского марала (Cervus elaphus sibiricus), полученного в про- и эукариотической системах экспрессии // Биотехнология. 2022. V. 38. С. 11–16.
  56. Alihanoglu S., Ektiren D., Karaaslan M. Recombinant expression and characterization of Oryctolagus cuniculus chymosin in Komagataella phaffii (Pichia pastoris) // Protein Expression and Purification. 2021. V. 183. P. 105874. DOI: 10.1016/j.pep.2021.105874
  57. Akishev Z., Aktayeva S., Kiribayeva A., Abdullayeva A., Baltin K., Mussakhmetov A., Tursunbekova A., Ramankulov Y., Khassenov B. Obtaining of recombinant camel chymosin and testing its milk-clotting activity on cow’s, goat’s, ewes’, camel’s and mare’s milk // Biology. 2022. V. 11(11). P. 1545. DOI: 10.3390/biology11111545
  58. O’Flaherty R., Bergin A., Flampouri E., Mota L. M., Obaidi, I., Quigley, A., Xie, Y., Butler, M. Mammalian cell culture for production of recombinant proteins: A review of the critical steps in their biomanufacturing // Biotechnology Advances. 2020. V. 43(May). P. 107552. DOI: 10.1016/j.biotechadv.2020.107552
  59. Juturu V., Wu J.C. Heterologous protein expression in Pichia pastoris: Latest research progress and applications // ChemBioChem. 2018. V. 19(1). P. 7–21. DOI: 10.1002/cbic.201700460
  60. De Wachter C., Van Landuyt L., Callewaert N. Engineering of yeast glycoprotein expression // Advances in Biochemical Engineering/Biotechnology. 2021. V. 175. P. 93–135. DOI: 10.1007/10_2018_69
  61. Музаев Д.М., Румянцев А.М., Самбук Е.В., Падкина М.В. Новые штаммы дрожжей pichia pastoris — продуценты гетерологичных белков // Экологическая генетика. 2015. Т. XIII. № 1. С. 10–15.
  62. Ahmad M., Hirz M., Pichler H., Schwab H. Protein expression in Pichia pastoris: Recent achievements and perspectives for heterologous protein production // Applied Microbiology and Biotechnology. 2014. V. 98(12). P. 5301–5317. https://doi.org/ 10.1007/s00253-014-5732-5
  63. Piva L.C., Bentacur M.O., Reis V.C., De Marco J.L., de Moraes L.M., Torres F.A. Molecular strategies to increase the levels of heterologous transcripts in Komagataella phaffii for protein production // Bioengineered. 2017. V. 8. № 5. P. 441–445. DOI: 10.1080/21655979.2017.1296613
  64. Raschmanová H., Weninger A., Knejzlík Z., Melzoch K., Kovar K. Engineering of the unfolded protein response pathway in Pichia pastoris: Enhancing production of secreted recombinant proteins // Applied Microbiology and Biotechnology. 2021. V. 105(11). P. 4397–4414. DOI: 10.1007/s00253-021-11336-5
  65. Ata Ö., Ergün B.G., Fickers P., Heistinger L., Mattanovich Di., Rebnegger C., Gasser B. What makes Komagataella phafi non-conventional? // FEMS Yeast Research. 2021. V. 21(8). P. 1–15. DOI: 10.1093/femsyr/foab059
  66. Küberl A., Schneider J., Thallinger G.G., Anderl I., Wibberg D., Hajek T., Jaenicke S., Brinkrolf K., Goesmann A., Szczepanowski R., Pühler A., Schwab H., Glieder A., Pichler H. High-quality genome sequence of Pichia pastoris CBS7435 // Journal of Biotechnology. 2011. V. 154(4). P. 312–320. DOI: 10.1016/J.JBIOTEC.2011.04.014
  67. Ткаченко А.А., Борщевская Л.Н., Синеокий С.П., Гордеева Т.Л. Редактирование генома Komagataella phaffii с использованием системы CRISPR/Cas9 для получения безмаркерного штамма-продуцента фитазы // Биохимия. 2023. Т. 88. Вып. 9. С. 1620–1630. DOI: 10.31857/S0320972523090130
  68. Wollborn D., Munkler L.P., Horstmann R., Germer A., Blank L.M., Büchs, J. Predicting high recombinant protein producer strains of Pichia pastoris MutS using the oxygen transfer rate as an indicator of metabolic burden // Scientifc Reports. 2022. V. 12(1). P. 1–13. DOI: 10.1038/s41598-022-15086-w
  69. Kaushik N., Lamminmäki U., Khanna N., Batra G. Enhanced cell density cultivation and rapid expression-screening of recombinant Pichia pastoris clones in microscale // Scientifc Reports. 2020. V. 10(1). P. 1–11. DOI: 10.1038/s41598-020-63995-5
  70. Gätjen D., Wieczorek M., Listek M., Tomszak F., Nölle V., Hanack K., Droste M. A switchable secrete-and-capture system enables efcient selection of Pichia pastoris clones producing high yields of Fab fragments // Journal of Immunological Methods. 2022. V. 511. P. 113383. DOI: 10.1016/j. jim.2022.113383
  71. Gassler T., Sauer M., Gasser B., Egermeier M., Troyer C., Causon T., Hann S., Mattanovich D., Steiger M.G. The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2 // Nature Biotechnology. 2020. V. 38(2). P. 210–216. DOI: 10.1038/s41587-019-0363-0
  72. Ito Y., Ishigami M., Terai G., Nakamura Y., Hashiba N., Nishi T., Nakazawa H., Hasunuma T., Asai K., Umetsu M., Ishii J., Kondo A. A streamlined strain engineering workfow with genome-wide screening detects enhanced protein secretion in Komagataella phafi // Communications Biology. 2022. V. 5(1). P. 1–12. DOI: 10.1038/s42003-022-03475-w
  73. Kato K., Kurimura Y., Makiguchi N., Asai Y. Determination of methanol strongly assimilating yeasts // The Journal of General and Applied Microbiology. 1974. V. 20. P. 123–127. DOI 10.2323/jgam.20.123
  74. Савельева Т.А. Инструкция по безопасным условиям эксплуатации лабораторного ферментера Minifors 5 л. Т.А Савельева – Алексеевка: ООО «ИЦ «Бирюч-НТ». 2021. 25 с.
  75. Gu Y., Gao J., Chang D., Lian J., Huang L., Cai J., Xu Z. Construction of a series of episomal plasmids and their application in the development of an efficient CRISPR/Cas9 system in Pichia pastoris // World Journal of Microbiology and Biotechnology. 2019. V. 35. DOI: 10.1007/s11274-019-2654-5
  76. De Schutter K., Lin Y.-C., Tiels P., Van Hecke A., Glinka S., Weber-Lehmann J., Rouzé P., Van de Peer Y., Callewaert N. Genome sequence of the recombinant protein production host Pichia pastoris // Nat. Biotechnol. 2009. V. 27. P. 561–566. DOI 10.1038/nbt.1544
  77. Mattanovich D., Jungo C., Wenger J., Dabros M., Maurer M. Yeast Suspension Culture // Industrial Scale Suspension Culture of Living Cells. 2014. P. 94–129. DOI: 10.1002/9783527683321.ch02
  78. Valli M., Tatto, N. E., Peymann, A., Gruber, C., Landes, N., Ekker, H., Thallinger, G. G., Mattanovich, D., Gasser, B., Graf, A. B. Curation of the genome annotation of Pichia pastoris (Komagataella phafi) CBS7435 from gene level to protein function // FEMS Yeast Research. 2016. V. 16(6). P. 1–12. DOI: 10. 1093/femsyr/fow051
  79. Bridges HR, Fearnley IM, Hirst J. The subunit composition of mitochondrial NADH:ubiquinone oxidoreductase (complex I) from Pichia pastoris // Molecular & Cellular Proteomics. 2010. V. 9. P. 2318–2326. DOI: 10.1074/mcp.M110.001255
  80. Ternes P., Wobbe T., Schwarz M., Albrecht S., Feussner K., Riezman I., Cregg J.M., Heinz E., Riezman H., Feussner I., Warnecke D. Two pathways of sphingolipid biosynthesis are separated in the yeast Pichia pastoris // Journal of Biological Chemistry. 2011. V. 286. P. 11401–11414. DOI: 10.1074/jbc.M110.193094
  81. Yu A.Q., Zhu J.C., Zhang B., Xing L.-J., Li M.-C. Knockout of fatty acid desaturase genes in Pichia pastoris GS115 and its effect on the fatty acid biosynthesis and physiological consequences // Archives of Microbiology. 2012. V. 194. P. 1023–1032. DOI: 10.1007/s00203-012-0835-9
  82. Tomas-Gamisans M., Ferrer P., Albiol J. Integration and validation of the genome-scale metabolic models of Pichia pastoris: A comprehensive update of protein glycosylation pathways, lipid and energy metabolism // PLoS One. 2016. V. 11. P. e0148031. DOI: 10.1371/journal.pone.0148031
  83. Prielhofer R., Cartwright S.P., Graf A.B. et al. Pichia pastoris regulates its gene-specific response to different carbon sources at the transcriptional, rather than the translational, level // BMC Genomics. 2015. V. 16. P. 167. DOI: 10.1186/s12864-015-1393-8
  84. Liu Y., Wu C., Wang J., Mo W., Yu M. Codon optimization, expression, purifcation, and functional characterization of recombinant human IL-25 in Pichia pastoris // Applied Microbiology and Biotechnology. 2013. V. 97(24). P. 10349–10358. DOI: 10.1007/s00253-013-5264-4
  85. Forster J., Halbfeld C., Zimmermann M., Blank L.M. A blueprint of the amino acid biosynthesis network of hemiascomycetes // FEMS Yeast Research. 2014. V. 14(7). P. 1090–1100. DOI: 10.1111/1567-1364.12205
  86. Wang J.R., Li Y.Y., Liu D.N., Liu J.S., Li P., Chen L.Z., Xu S.D. Codon optimization signifcantly improves the expression level of α-Amylase gene from Bacillus licheniformis in Pichia pastoris // BioMed Research International. 2015. V. 248680. DOI: 10.1155/2015/248680
  87. He H., Wu S., Mei M., Ning J., Li C., Ma L., Zhang G., Yi L. A combinational strategy for efective heterologous production of functional human lysozyme in Pichia pastoris // Frontiers in Bioengineering and Biotechnology. 2020. V. 8. P. 1–12. DOI: 10.3389/fbioe.2020.00118
  88. Che Z., Cao X., Chen G., Liang Z. An efective combination of codon optimization, gene dosage, and process optimization for high-level production of fbrinolytic enzyme in Komagataella phafi (Pichia pastoris) // BMC Biotechnology. 2020. V. 20(1). P. 1–13. DOI: 10.1186/s12896-020-00654-7
  89. Huang Y., Lin T., Lu L., Cai F., Lin J., Jiang Y., Lin Y. Codon pair optimization (CPO): A software tool for synthetic gene design based on codon pair bias to improve the expression of recombinant proteins in Pichia pastoris // Microbial Cell Factories. 2021. V. 20(1). P. 1–10. DOI: 10.1186/ s12934-021-01696-y
  90. Karaoğlan M., Erden-Karaoğlan F. Efect of codon optimization and promoter choice on recombinant endo-polygalacturonase production in Pichia pastoris // Enzyme and Microbial Technology. 2020. V. 139. P. 109589. DOI: 10.1016/j.enzmictec.2020.109589
  91. Aw R., Polizzi K.M. Can too many copies spoil the broth? // Microbial Cell Factories. 2013. V. 12(1). P. 1–9. DOI: 10.1186/1475-2859-12-128
  92. Fadzil N.A., Lim S.K., Chew A.L., Khoo B.Y. Multiple gene copy number increases total protein expression and enzyme activity of DNA topoisomerase I in Pichia pastoris // World Academy of Sciences Journal. 2022. V. 4. DOI: 10.3892/wasj.2022.167
  93. Li P., Anumanthan A., Gao X.‐G., Ilangovan K., Suzara V.V., Düzgüneş N., Renugopalakrishnan V. Expression of recombinant proteins in Pichia pastoris // Applied Biochemistry and Biotechnology. 2007. V. 142(2). P. 105–124. DOI: 10.1007/s12010-007-0003-x
  94. Anggiani M., Helianti I., Abinawanto, A. Optimization of methanol induction for expression of synthetic gene Thermomyces lanuginosus lipase in Pichia pastoris // AIP Conference Proceeding. 2023. V. 020157 (2018). DOI: 10.1063/1.5064154
  95. Duan X.P., Gao J.Q., Zhou Y.J.J. Advances in engineering methylotrophic yeast for biosynthesis of valuable chemicals from methanol // Chinese Chemical Letters. 2018. V. 29. P. 681–686. DOI: 10.1016/j.cclet.2017.11.015
  96. Vogl T., Glieder A. Regulation of Pichia pastoris promoters and its consequences for protein production // New Biotechnology. 2013. V. 30(4). P. 385–404. DOI: 10.1016/j.nbt.2012.11.010
  97. Santoso A., Herawati N., Rubiana Y. Effect of methanol induction and incubation time on expression of human erythropoietin in methylotropic yeast Pichia pastoris // Makara Journal of Technology. 2012. V. 16(1). P. 29–34. DOI: 10.7454/mst.v16i1.1041
  98. Jia L., Li T., Wu Y., Wu C., Li H., Huang A. Enhanced human lysozyme production by Pichia pastoris via periodic glycerol and dissolved oxygen concentrations control // Applied Microbiology and Biotechnology. 2021. V. 105(3). P. 1041–1050. DOI: 10.1007/s00253-021-11100-9
  99. Gonçalves A.M., Pedro A.Q., Maia C., Sousa F., Queiroz J.A., Passarinha L.A. Pichia pastoris: A recombinant microfactory for antibodies and human membrane proteins // Journal of Microbiology and Biotechnology. 2013. V. 23(5). P. 587–601. DOI: 10.4014/jmb.1210.10063
  100. Yu.Y. Fan., Yang J., Zhao F., Lin Y., Han S. Comparative transcriptome and metabolome analyses reveal the methanol dissimilation pathway of Pichia pastoris // BMC Genomics. 2022. V. 23(1). P. 1–14. DOI: 10.1186/s12864-022-08592-8
  101. Vogl T., Sturmberger L., Kickenweiz T., Wasmayer R., Schmid C., Hatzl A., Gerstmann M. A., Pitzer J., Wagner M., Thallinger G.G., Geier M., Glieder A. A toolbox of diverse promoters related to methanol utilization: Functionally verifed parts for heterologous pathway expression in Pichia pastoris // ACS Synthetic Biology. 2016. V. 5(2). P. 172–186. DOI: 10.1021/acssynbio.5b00199/
  102. Ata Ö., Boy E., Güneş H., Çalik P. Codon optimization of xylA gene for recombinant glucose isomerase production in Pichia pastoris and fed-batch feeding strategies to fne-tune bioreactor performance // Bioprocess and Biosystems Engineering. 2015. V. 38(5). P. 889–903. DOI: 10.1007/s00449-014-1333-z
  103. Takagi S., Tsutsumi N., Terui Y., Kong X.Y., Yurimoto H., Sakai Y. Engineering the expression system for Komagataella phafi (Pichia pastoris): An attempt to develop a methanol-free expression system // FEMS Yeast Research. 2019. V. 19(6). P. 1–10. DOI: 10.1093/femsyr/foz059
  104. Prielhofer R., Maurer M., Klein J., Wenger J., Kiziak C., Gasser B. Induction without methanol: Novel regulated promoters enable high-level expression in Pichia pastoris // Microbial Cell Factories. 2013. V. 12. P. 5. DOI: 10.1186/1475-2859-12-5
  105. Iglesias-Figueroa B., Valdiviezo-Godina N., Siqueiros-Cendón T., Sinagawa-García S., Arévalo-Gallegos S., Rascón-Cruz Q. High-level expression of recombinant bovine lactoferrin in Pichia pastoris with antimicrobial activity // International Journal of Molecular Sciences. 2016. V. 17. P. E902. DOI: 10.3390/ijms17060902
  106. Jungo C., Marison I., von Stockar U. Regulation of alcohol oxidase of a recombinant Pichia pastoris Mut+ strain in transient continuous cultures // Journal of Biotechnology. 2007. V. 130. P. 236–246. DOI: 10.1016/j.jbiotec.2007.04.004
  107. Wang Z., Wang Y., Zhang D., Li J., Hua Z., Du G., Chen, J. Enhancement of cell viability and alkaline polygalacturonate lyase production by sorbitol co‐feeding with methanol in Pichia pastoris fermentation // Bioresource Technology. 2010. V. 101(4). P. 1318–1323. DOI: 10.1016/j.biortech.2009.09.025
  108. Çelik E., Çalık P., Oliver S.G. Metabolic flux analysis for recombinant protein production by Pichia pastoris using dual carbon sources: effects of methanol feeding rate // Biotechnol. Bioeng. 2010. V. 105. P. 317–329. DOI: 10.1002/bit.22543
  109. Zepeda A.B., Figueroa C.A., Abdalla D.S.P., Maranhão A.Q., Ulloa P.H., Pessoa Jr.A., Farías J.G. Biomarkers to evaluate the effects of temperature and methanol on recombinant Pichia pastoris // Brazilian Journal of Microbiology. 2014. V. 45. P. 475-483. DOI: 10.1590/S1517-83822014000200014
  110. Zepeda A.B., Figueroa C.A., Abdalla D.S.P., Maranhão A.Q., Ulloa P.H., Pessoa Jr.A., Farías J.G. HSF-1, HIF-1and HSP90 expression on recombinant Pichia pastoris under fed-batch fermentation // Brazilian Journal of Microbiology. 2014. V. 45(2). P. 485–490. DOI: 10.1590/s1517-83822014000200015
  111. García-Ortega X., Cámara E., Ferrer P., Albiol J., MontesinosSeguí J.L., Valero F. Rational development of bioprocess engineering strategies for recombinant protein production in Pichia pastoris (Komagataella phafi) using the methanol-free GAP promoter. Where do we stand? // New Biotechnology. 2019. V. 53. P. 24–34.
  112. Arruda A., Reis V.C.B., Batista V.D.F., Daher B.S., Piva L.C., De Marco J.L., de Noraes L.M.P., Torres F.A.G. A constitutive expression system for Pichia pastoris based on the PGK1 promoter // Biotechnology Letters. 2016. V. 38(3). P. 509–517. DOI: 10.1007/s10529-015-2002-2
  113. Periyasamy S., Govindappa N., Sreenivas S., Sastry K. Isolation, characterization and evaluation of the Pichia pastoris sorbitol dehydrogenase promoter for expression of heterologous proteins // Protein Expression and Purifcation. 2013. V. 92(1). P. 128–133. DOI: 10.1016/j.pep.2013.09.008
  114. Liang S., Zou C., Lin Y., Zhang X., Ye Y. Identifcation and characterization of P GCW14: A novel, strong constitutive promoter of Pichia pastoris // Biotechnological Letters. 2013. V. 35(11). P. 1865–1871. DOI: 10.1007/s10529-013-1265-8
Дата поступления: 20.08.2024
Одобрена после рецензирования: 04.09.2024
Принята к публикации: 22.10.2024