E.I. Antonova1, N.V. Firsova2, N.A. Lengesova3
1–3 Scientific Research Center for Fundamental and Applied Problems of Bioecology and Biotechnology
Ulyanovsk State Pedagogical University named after I.N. Ulyanov (Ulyanovsk, Russia)
1 antonov_67@mail.ru, 2 n-firsova@mail.ru, 3 lengesova@yandex.ru
Various expression systems are available for efficient production of target proteins, including prokaryotic, eukaryotic and mammalian systems. Pichia pastoris (now Komagataella phaffii) is the most widely used expression system in the field of genetic engineering as a more efficient target protein expression system. The wide range of practical applications of Pichia pastoris as an expression system determines the need for more in-depth morphofunctional, genetic and phylogenetic analyses of this group of microorganisms.
For this purpose, a retrospective meta- and bibliometric analysis in the format of a ‘scoping review’ of published experimental and basic research on the history of use as an expression system, taxonomic position, genome organisation, metabolism in comparison with other expression systems, and practical applications of the methylotrophic yeast P. pastoris (Komagataella phaffii) was carried out.
The review presents systematised data on the biology of the methylotrophic yeast P.pastoris (Komagataella phaffii). In particular, the phylogenetic position of the microorganism, the use of P.pastoris as an organism-producer of recombinant proteins in the process of biotechnological production, all types of strains and a detailed analysis of the organisation of the genome, as well as promoters and plasmids are considered. The metabolic pathways of P.pastoris are reviewed. In particular, the advantages of using the P.pastoris system – higher protein folding efficiency, fermentation with high cell density, strong expression system, genetic stability and mature protein secretion system to the external environment - are summarised. Information on the use of P.pastoris as a host cell for protein production, strains, and further applications of recombinant proteins in the pharmaceutical, food industry is given in chronological order. A detailed characterisation of the genome - size, chromosome organisation - is given. Examples and characterisation of plasmids used for protein expression, optimal methanol concentrations, types and structure of promoters, features of metabolism with description of metabolic pathways are given.
Thus, the presented review is a systematic and in-depth analysis of Pichia pastoris (Komagataella phaffii) biology for both the field of fundamental and practical application of the information presented in the article. The review includes new data on the biology of Pichia pastoris (Komagataella phaffii), provides an opportunity to get a detailed and systematised view on this issue, since one of the main tasks of a modern researcher is to search for relevant information with scientific value.
Antonova E.I., Firsova N.V., Lengesova N.A. Characterization of Pichia pastoris (Komagataella phaffii) as an expression system for biotechnological production. Technologies of Living Systems. 2024. V. 21. № 4. Р. 112-129. DOI: https://doi.org/10.18127/j20700997-202404-12 (In Russian).
- Karbalaei M., Rezaee S.A., Farsiani H. Pichia pastoris: a highly successful expression system for optimal synthesis of heterologous proteins. Journal of Cellular Physiology. 2020. V. 235(9). P. 5867–5881. DOI: 10.1002/jcp.29583
- Bernauer L., Radkohl A., Lehmayer L.G.K., Emmerstorfer-Augustin A. Komagataella phafi as emerging model organism in fundamental research. Frontiers in microbiology. 2021. V. 11. P. 1–16. DOI: 10.3389/fmicb.2020.607028
- Goffeau A., Barrell B.G., Bussey H., Davis R.W., Dujon B., Feldmann H., Galibert F., Hoheisel J.D., Jacq C., Johnston M., Louis E.J., Mewes H.W., Murakami Y., Philippsen P., Tettelin H., Oliver S.G. Life with 6000 genes. Science. 1996. V. 274. P. 546–567. DOI: 10.1126/science.274.5287.546
- Tran A.M., Nguyen T.T., Nguyen C.T., Huynh-Thi X.M., Nguyen C.T., Trinh M.T., Tran L.-T., Cartwright S.P., Bill R.M., Tran-Van H. Pichia pastoris versus Saccharomyces cerevisiae: A case study on the recombinant production of human granulocyte-macrophage colony-stimulating factor. BMC Research Notes. 2017. V. 10(1). P. 6–13. DOI: 10.1186/ s13104-017-2471-6
- Vijayakumar V.E., Venkataraman K. A. Systematic review of the potential of Pichia pastoris (Komagataella phaffii) as an alternative host for biologics production. Molecular Biotechnology. 2024. V. 66. P. 1621–1639. DOI: 10.1007/s12033-023-00803-1
- Ergun B.G., Lacın K., Caloğlu B., Binay B. Second generation Pichia pastoris strain and bioprocess designs. Biotechnology for biofuels and bioproducts. 2022. V. 15. P. 150. DOI: 10.1186/s13068-022-02234-7
- Zhu T.C., Sun H.B., Wang M.Y., Li Y. Pichia pastoris as a versatile cell factory for the production of industrial enzymes and chemicals: Current status and future perspectives. Journal of Biotechnology. 2019. V. 14. P. e1800694. DOI: 10.1002/biot.201800694
- Pan Y., Yang J., Wu J., Yang L., Fang H. Current advances of Pichia pastoris as cell factories for production of recombinant proteins. Frontiers in Microbiology. 2022. V. 13. P. 1059777. DOI: 10.3389/fmicb.2022.1059777
- Schwarzhans J.P., Luttermann T., Geier M., Kalinowski J., Friehs K. Towards systems metabolic engineering in Pichia pastoris. Biotechnology Advances. 2017. V. 35. P. 681–710. DOI: 10.1016/j.biotechadv.2017.07.009
- Guilliermond A. Zygosaccharomyces pastori, nouvelle esp`ece de levures copulation hґ et ґerogamique. Bulletin de la Societe chimique de France. 1920. V. 36. P. 203–211. DOI: 10.1007/s11274-021-03066-7
- Zahrl R.J., Pen˜a D.A., Mattanovich D., Gasser B. Systems biotechnology for protein production in Pichia pastoris. FEMS Yeast Research. 2017. V. 17. № 7. DOI: 10.1093/femsyr/fox068
- Phaff H.J., Miller M.W., Shifrine M. The taxonomy of yeasts isolated from drosophila in the yosemite region of California. Antonie Van Leeuwenhoek. 1956. V. 22. P. 145–161. DOI: 10.1007/BF02538322
- Heistinger L., Gasser B., Mattanovich D. Microbe Profile: Komagataella phaffii: a methanol devouring biotech yeast formerly known as Pichia pastoris. Microbiology. 2020. V. 166. P. 614–616. DOI: 10.1099/mic.0.000958
- Yamada Y., Matsuda M., Maeda K., Mikata K. The phylogenetic relationships of methanol-assimilating yeasts based on the partial sequences of 18S and 26S ribosomal RNAs: the proposal of Komagataella gen. nov. (Saccharomycetaceae). Bioscience, Biotechnology, and Biochemistry. 1995. V. 59. P. 439–444. DOI: 10.1271/bbb.59.439
- Naumov G.I., Naumova E.S., Boundy‐Mills K.L. Description of Komagataella mondaviorum sp. nov., a new sibling species of Komagataella (Pichia) pastoris. Antonie Van Leeuwenhoek. 2018. V. 111. P. 1–11. DOI: 10.1007/s10482-018-1028-6
- Kurtzman C.P. Description of Komagataella phaffii sp. nov. and the transfer of Pichia pseudopastoris to the methylotrophic yeast genus Komagataella. International Journal of Systematic and Evolutionary Microbiology. 2005. V. 55. P. 973–976. DOI: 10.1099/ijs.0.63491-0
- Naumov G.I., Naumova E.S., Tyurin O.V., Kozlov D.G. Komagataella kurtzmanii sp. nov., a new sibling species of Komagataella (Pichia) pastoris based on multigene sequence analysis. Antonie Van Leeuwenhoek. 2013. V. 104(3). P. 339–347. DOI: 10.1007/s10482-013-9956-7
- Riley R., Haridas S., Wolfe K.H., Lopes M.R., Hittinger C.T., Göker M., Salamov A.A., Wisecaver J.H., Long T.M., Calvey C.H., Aerts A.L., Barry K.W., Choi C., Clum A., Coughlan A.Y., Deshpande S., Douglass A.P., Hanson S.J., Klenk H.P., LaButti K.M., Lapidus A., Lindquist E.A., Lipzen A.M., Meier-Kolthoff J.P., Ohm R.A., Otillar R.P., Pangilinan J.L., Peng Y., Rokas A., Rosa C.A., Scheuner C., Sibirny A.A., Slot J.C., Stielow J.B., Sun H., Kurtzman C.P., Blackwell M., Grigoriev I.V., Jeffries T.W. Comparative genomics of biotechnologically important yeasts. Proceedings of the National Academy of Sciences. 2016. V. 113(35). P. 9882–9887. DOI: 10.1073/pnas.1603941113
- Shen X.X., Opulente D.A., Kominek J., Zhou X., Steenwyk J.L., Buh K.V., Haase M.A.B., Wisecaver J.H., Wang M., Doering D.T., Boudouris J.T., Schneider R.M., Langdon Q.K., Ohkuma M., Endoh R., Takashima M., Manabe R.I., Čadež N., Libkind D., Rosa C.A., DeVirgilio J., Hulfachor A.B., Groenewald M., Kurtzman C.P., Hittinger C.T., Rokas A. Tempo and mode of genome evolution in the budding yeast subphylum. Cell. 2018. V. 175(6). P. 1533–1545. DOI: 10.1016/j.cell.2018.10.023
- Love K.R., Shah K.A., Whittaker C.A., Wu J., Bartlett M.C., Ma D., Leeson R.L., Priest M., Borowsky J., Young S.K., Love J.C. Comparative genomics and transcriptomics of Pichia pastoris. BMC Genomics. 2016. V. 17(1). P. 1–17. DOI: 10.1186/s12864-016-2876-y
- Cregg J.M., Barringer K.J., Hessler A., Madden Y.K.R. Pichia-pastoris as a host system for transformations. Molecular and Cellular Biology. 1985. V. 5. P. 3376–3385. DOI: 10.1128/mcb.5.12.3376-3385.1985
- Cereghino G.P.L., Cereghino J.L., Ilgen C., Cregg J.M. Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Current Opinion in Biotechnology. 2002. 13. P. 329–332. DOI: 10.1016/s0958-1669(02)00330-0
- Barone G.D., Emmerstorfer-Augustin A., Biundo A., Pisano I., Coccetti P., Mapelli V., Camattari A. (). Industrial production of proteins with Pichia pastoris—Komagataella phaffi. Biomolecules. 2023. V. 13(3). P. 441. DOI: 10.3390/biom130304 41
- Beklemishev A.B., Pyhtina M.B., Kulikov Ya.M., Goryachkovskaya T.N., Bochkov D.V., Sergeeva S.V., Vasil'eva A.R., Romanov V.P., Novikova D.S., Pel'tek S.E. Poluchenie rekombinantnogo shtamma Komagataella phaffii – producenta proteinazy K iz Tritirachium album. Vavilovskij zhurnal genetiki i selekcii. 2021. T. 25. № 8. S. 882–888. DOI: 10.18699/VJ21.102 (in Russian).
- Balabova D.V., Rudometov A.P., Belenkaya S.V., Belov A.N., Koval A.D., Bondar A.A., Bakulina A.Yu., Rukhlova E.A., Elchaninov V.V., Shcherbakov D.N. Biochemical and technological properties of moose (Alces alces) recombinant chymosin. Vavilovskii Zhurnal Genet. I Sel. (Vavilov. J. Genet. Breed.). 2022. V. 26. P. 240–249. DOI: 10.18699/VJGB-22-31
- Fil'kin S.Yu., CHertova N.V., Vavilova E.A., Zacepin S.S., El'darov M.A., Sadyhov E.G., Fyodorov A.N., Lipkin A.V. Opti-mizaciya metoda polucheniya rekombinantnogo himozina v metilotrofnyh drozhzhah Komagataella phaffii. Prikladnaya biohi-miya i mikrobiologiya. 2020. T. 56. № 6. S. 571–576. DOI: 10.31857/S0555109920060057 (in Russian).
- Bytyak D.S., Korneeva O.S., Motina E.A. Razrabotka strategii indukcii AOH1 promotora pri kul'tivirovanii metilo-trofnyh drozhzhej Komagataella phaffii. Vestnik VGUIT. 2021. T. 83. № 1. S. 115–120. DOI: 10.20914/2310-1202-2021-1-115-120 (in Russian).
- National Center for Biotechnology Information. PubChem Patent Summary for US-4414329-A, Biochemical conversions by yeast fermentation at high cell densities. https://pubchem.ncbi.nlm.nih.gov/patent/US-4414329-A. Accessed Aug. 16, 2024.
- Wegner G.H. Emerging applications of the methylotrophic yeasts. FEMS microbiology letters. 1990. V. 87. P. 279–284. DOI: 10.1111/j.1574-6968.1990.tb04925.x
- Wang N., Wangb K.Y., Li G.Q., Guo W.F., Liu D.H. Expression and characterization of camel chymosin in Pichia pastoris. Protein Expression and Purification. 2015. P. 75–81. DOI: 10.1016/j.pep.2015.03.012
- Krainer F.W., Darnhofer B., Birner-Gruenberger R., Glieder A. Recombinant production of a peroxidase-protein G fusion protein in Pichia pastoris. Journal of Biotechnology. 2016. V. 219. P. 24–27. DOI: 10.1016/j.jbiotec.2015.12.020
- Arias C.A.D., Marques D.V., Malpiedi L.P., Maranhão A.Q., Parra D.A.S., Converti A. Cultivation of Pichia pastoris carrying the scFv anti LDL (−) antibody fragment. Effect of preculture carbon source. Biotechnology and Industrial Microbiology. 2017. V. 48. Iss. 3. P. 419–426. DOI: 10.1016/j.bjm.2016.11.009
- Filkin S.Y., Chertova N.V., Zenin V.A., Lipkin A.V., Sichev A.A., Bityak D.S., Sadykhov E.G., Popov V.O., Fedorov A.N. Expression, purification and biophysical characterization of recombinant Streptomyces violaceoruber phospholipase PLA2 overproduced in Pichia pastoris. Preparative biochemistry & biotechnology. 2020. V. 50. № 6. P. 549–555. DOI: 10.1080/10826068.2020.1712657
- Krainer F.W., Dietzsch C., Hajek T., Herwig C., Spadiut O., Glieder A. Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway. Microbial Cell Factories. 2012. V. 11. P. 22. DOI: 10.1186/1475-2859-11-22
- Akishev Z., Kiribayeva A., Mussakhmetov A., Baltin K., Ramankulov Y., Khassenov B. Constitutive expression of Camelus bactrianus prochymosin B in Pichia pastoris.. Heliyon. 2021. V. 7. P. e07137. DOI: 10.1016/j.heliyon.2021.e07137
- Darby R.A., Cartwright S.P., Dilworth M.V., Bill R.M. Yeast species shall i choose? Saccharomyces cerevisiae versus Pichia pastoris (Review). Recombinant protein production in Yeast: methods and protocols, methods in molecular biology. 2012. V. 866. P. 11–23. DOI: 10.1007/978-1-61779-770-5_2
- Cregg J.M., Cereghino J.L., Shi J.Y., Higgins D.R. Recombinant protein expression in Pichia pastoris. Molecular Biotechnology. 2000. V. 16. P. 23–52. DOI: 10.1385/MB:16:1:23
- Luo H.Y., Yao B., Yuan T.Z., Wang Y.R., Shi X.Y., Wu N.F., Fan Y.L. Overexpression of Escherchia coli phytase with high specific activity. Sheng Wu Gong Cheng Xue Bao = Chinese journal of biotechnology. 2004. V. 20. P. 78–84
- Huang H., Luo H., Yang P., Meng K., Wang Y., Yuan T., Bai Y., Yao B. A novel phytase with preferable characteristics from Yersinia intermedia. Biochemical and Biophysical Research Communications. 2006. V. 350. P. 884–889. DOI: 10.1007/s00253-008-1556-5
- Xiong A.S., Yao Q.H., Peng R.H., Zhang Z., Xu F., Liu J.G., Han P.L., Chen J.M. High level expression of a synthetic gene encoding Peniophora lycii phytase in methylotrophic yeast Pichiapastoris. Applied Microbiology and Biotechnology. 2006. V. 72. P. 1039–1047. DOI: 10.1007/s00253-006-0384-8
- Pal Roy M., Mazumdar D., Dutta S., Saha S.P., Ghosh S. Cloning and expression of phytase appA gene from Shigella sp. CD2 in Pichia pastoris and comparison of properties with recombinant enzyme expressed in E. coli. PLoS One. 2016. V. 11. P. e0145745. DOI: 10.1371/journal.pone.0145745
- Zhao W., Xiong A., Fu X., Gao F., Tian Y., Peng R. High level expression of an acidstable phytase from Citrobacter freundii in Pichia pastoris. Applied biochemistry and biotechnology. 2010. 162. P. 2157–2165. DOI: 10.1007/s12010-010-8990-4
- Fil'kin S.Yu., CHertova N.V., Zacepin S.S., Sadyhov E.G., Fyodorov A.N., Lipkin A.V. Poluchenie himozina beluhi (Delphin-apterus leucas) v metilotrofnyh drozhzhah Komagataella phaffii i harakteristika rekombinantnogo fermenta. Prikladnaya biohimiya i mikrobiologiya. 2021. T. 57. № 3. S. 228–234. DOI: 10.31857/S0555109921030028 (in Russian).
- Antonova E.I., Abbyazova A.N., Firsova N.V., Achilov A.B., Viktorov D.A., Lengesova N.A. Geneticheskie konstrukcii kak istochnik polucheniya rekombinantnogo himozina. Fundamental'nye i prikladnye issledovaniya po prioritetnym napravle-niyam bioekologii i biotekhnologii: Materialy VII Vseros. nauch.-praktich. konf. s mezhdunarodnym uchastiem. CHeboksary: ID «Sreda». 2024. S. 49–55. DOI: 10.31483/r-112097 (in Russian).
- Noseda D.G., Recupero M., Blasco M., Bozzo J., Galvagno. M.A. Production in stirred-tank bioreactor of recombinant bovine chymosin B by a high-level expression transformant clone of Pichia pastoris. Protein expression and purification. 2016. V. 123. P. 112–121. DOI: 10.1016/j.pep.2016.03.008
- Abramczyk D., Olmos M.C.S., Rojas A.A.R., Schindler D., Robertson D., McColm S., Marston A.L., Barlow P.N. A supernumerary synthetic chromosome in Komagataella phaffii as a repository for extraneous genetic material. Microbial Cell Factories. 2023. V. 22(1). P. 259. DOI: 10.1186/s12934-023-02262-4
- Belenkaya S.V., Balabova D.V., Belov A.N., Koval A., Shcherbakov D., Elchaninov V. Basic biochemical properties of recombinant chymosins (Review). Applied biochemistry and microbiology. 2020. V. 56(4). P. 315–326. DOI: 10.1134/S0003683820040031
- Rogelj I., Perko B., Francky A., Penca V., Purgenˇcar J. Recombinant Lamb Chymosin as an Alternative Coagulating Enzyme in Cheese Production. Journal of Dairy Science. 2001. V. 84. P. 1020–1026. DOI: 10.3168/jds.S0022-0302(01)74561-4
- Vega-Hernández M.C., A. Gomez-Coello, J. Villar, F. Claverie-Martin. Molecular cloning and expression in yeast of caprine prochymosin. Journal of Biotechnology. 2004. V. 114. P. 69–79. DOI: 10.1016/j.jbiotec.2004.06.002
- Vallejo J.A., Ageitos J.M., Poza M., Villa T.G. Cloning and expression of buffalo active chymosin in Pichia pastoris. Journal of Agricultural and Food Chemistry. 2008. V. 56. P. 10606– 10610. DOI: 10.1021/jf802339e
- Balabova D.V., Belenkaya S.V., Volosnikova E.A., Hermes T., Chirkova V., Sharlaeva E., Shcherbakov D., Belov A., Koval A., Elchaninov V. Can recombinant tree shrew (Tupaia belangeri chinensis) chymosin coagulate cow (Bos taurus) milk?. Applied Biochemistry and Microbiology. 2022. V. 58. P. 763–772. DOI: 10.1134/S0003683822060023
- Belenkaya S.V., Rudometov A.P., Shcherbakov D.N., Balabova D.V., Kriger A.V., Belov A.N., Koval A.D., Elchaninov V.V. Biochemical properties of recombinant chymosin in alpaca (Vicugna pacos L.). Applied Biochemistry and Microbiology. 2018. V. 54(6). P. 569–576. DOI: 10.1134/S000 3683818060054
- Belenkaya S.V., Bondar A.A., Kurgina T.A., Elchaninov V., Bakulina A., Rukhlova E., Lavrik O., Ilyichev A., Shcherbakov D. Characterization of the altai maral chymosin gene, production of a chymosin recombinant analog in the prokaryotic expression system, and analysis of its several biochemical properties. Biochemistry. 2020. V. 85. P. 781–791. DOI: 10.1134/S0006297920070068
- Elchaninov V.V., Shcherbakov D.N. Development of a producer of recombinant maral chymosin based on the yeast Kluyveromyces lactis. Biotechnology. 2021. V. 37. P. 20–27. DOI: 10.21519/0234-2758-2021-37-5-20-27
- Belen'kaya S., CHirkova V., SHarlaeva E., El'chaninov V., Shcherbakov D. Parametry fermentativnoj kinetiki rekombinantnogo himozina altajskogo marala (Cervus elaphus sibiricus), poluchennogo v pro- i eukarioticheskoj sistemah ekspressii. Biotekh-nologiya. 2022. V. 38. S. 11–16. (in Russian).
- Alihanoglu S., Ektiren D., Karaaslan M. Recombinant expression and characterization of Oryctolagus cuniculus chymosin in Komagataella phaffii (Pichia pastoris). Protein Expression and Purification. 2021. V. 183. P. 105874. DOI: 10.1016/j.pep.2021.105874
- Akishev Z., Aktayeva S., Kiribayeva A., Abdullayeva A., Baltin K., Mussakhmetov A., Tursunbekova A., Ramankulov Y., Khassenov B. Obtaining of recombinant camel chymosin and testing its milk-clotting activity on cow’s, goat’s, ewes’, camel’s and mare’s milk. Biology. 2022. V. 11(11). P. 1545. DOI: 10.3390/biology11111545
- O’Flaherty R., Bergin A., Flampouri E., Mota L. M., Obaidi, I., Quigley, A., Xie, Y., Butler, M. Mammalian cell culture for production of recombinant proteins: A review of the critical steps in their biomanufacturing. Biotechnology Advances. 2020. V. 43(May). P. 107552. DOI: 10.1016/j.biotechadv.2020.107552
- Juturu V., Wu J.C. Heterologous protein expression in Pichia pastoris: Latest research progress and applications. ChemBioChem. 2018. V. 19(1). P. 7–21. DOI: 10.1002/cbic.201700460
- De Wachter C., Van Landuyt L., Callewaert N. Engineering of yeast glycoprotein expression. Advances in Biochemical Engineering/Biotechnology. 2021. V. 175. P. 93–135. DOI: 10.1007/10_2018_69
- Muzaev D.M., Rumyancev A.M., Sambuk E.V., Padkina M.V. Novye shtammy drozhzhej pichia pastoris — producenty geterolo-gichnyh belkov. Ekologicheskaya genetika. 2015. T. XIII. № 1. S. 10–15. (in Russian).
- Ahmad M., Hirz M., Pichler H., Schwab H. Protein expression in Pichia pastoris: Recent achievements and perspectives for heterologous protein production. Applied Microbiology and Biotechnology. 2014. V. 98(12). P. 5301–5317. https://doi.org/ 10.1007/s00253-014-5732-5
- Piva L.C., Bentacur M.O., Reis V.C., De Marco J.L., de Moraes L.M., Torres F.A. Molecular strategies to increase the levels of heterologous transcripts in Komagataella phaffii for protein production. Bioengineered. 2017. V. 8. № 5. P. 441–445. DOI: 10.1080/21655979.2017.1296613
- Raschmanová H., Weninger A., Knejzlík Z., Melzoch K., Kovar K. Engineering of the unfolded protein response pathway in Pichia pastoris: Enhancing production of secreted recombinant proteins. Applied Microbiology and Biotechnology. 2021. V. 105(11). P. 4397–4414. DOI: 10.1007/s00253-021-11336-5
- Ata Ö., Ergün B.G., Fickers P., Heistinger L., Mattanovich Di., Rebnegger C., Gasser B. What makes Komagataella phafi non-conventional? FEMS Yeast Research. 2021. V. 21(8). P. 1–15. DOI: 10.1093/femsyr/foab059
- Küberl A., Schneider J., Thallinger G.G., Anderl I., Wibberg D., Hajek T., Jaenicke S., Brinkrolf K., Goesmann A., Szczepanowski R., Pühler A., Schwab H., Glieder A., Pichler H. High-quality genome sequence of Pichia pastoris CBS7435. Journal of Biotechnology. 2011. V. 154(4). P. 312–320. DOI: 10.1016/J.JBIOTEC.2011.04.014
- Tkachenko A.A., Borshchevskaya L.N., Sineokij S.P., Gordeeva T.L. Redaktirovanie genoma Komagataella phaffii s ispol'zovani-em sistemy CRISPR/Cas9 dlya polucheniya bezmarkernogo shtamma-producenta fitazy. Biohimiya. 2023. T. 88. Vyp. 9. S. 1620–1630. DOI: 10.31857/S0320972523090130 (in Russian).
- Wollborn D., Munkler L.P., Horstmann R., Germer A., Blank L.M., Büchs, J. Predicting high recombinant protein producer strains of Pichia pastoris MutS using the oxygen transfer rate as an indicator of metabolic burden. Scientifc Reports. 2022. V. 12(1). P. 1–13. DOI: 10.1038/s41598-022-15086-w
- Kaushik N., Lamminmäki U., Khanna N., Batra G. Enhanced cell density cultivation and rapid expression-screening of recombinant Pichia pastoris clones in microscale. Scientifc Reports. 2020. V. 10(1). P. 1–11. DOI: 10.1038/s41598-020-63995-5
- Gätjen D., Wieczorek M., Listek M., Tomszak F., Nölle V., Hanack K., Droste M. A switchable secrete-and-capture system enables efcient selection of Pichia pastoris clones producing high yields of Fab fragments. Journal of Immunological Methods. 2022. V. 511.
P. 113383. DOI: 10.1016/j. jim.2022.113383 - Gassler T., Sauer M., Gasser B., Egermeier M., Troyer C., Causon T., Hann S., Mattanovich D., Steiger M.G. The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2. Nature Biotechnology. 2020. V. 38(2). P. 210–216. DOI: 10.1038/s41587-019-0363-0
- Ito Y., Ishigami M., Terai G., Nakamura Y., Hashiba N., Nishi T., Nakazawa H., Hasunuma T., Asai K., Umetsu M., Ishii J., Kondo A. A streamlined strain engineering workfow with genome-wide screening detects enhanced protein secretion in Komagataella phafi. Communications Biology. 2022. V. 5(1). P. 1–12. DOI: 10.1038/s42003-022-03475-w
- Kato K., Kurimura Y., Makiguchi N., Asai Y. Determination of methanol strongly assimilating yeasts. The Journal of General and Applied Microbiology. 1974. V. 20. P. 123–127. DOI 10.2323/jgam.20.123
- Savel'eva T.A. Instrukciya po bezopasnym usloviyam ekspluatacii laboratornogo fermentera Minifors 5 l. T.A Savel'eva – Alekseevka: OOO «IC «Biryuch-NT». 2021. 25 s. (in Russian).
- Gu Y., Gao J., Chang D., Lian J., Huang L., Cai J., Xu Z. Construction of a series of episomal plasmids and their application in the development of an efficient CRISPR/Cas9 system in Pichia pastoris. World Journal of Microbiology and Biotechnology. 2019. V. 35. DOI: 10.1007/s11274-019-2654-5
- De Schutter K., Lin Y.-C., Tiels P., Van Hecke A., Glinka S., Weber-Lehmann J., Rouzé P., Van de Peer Y., Callewaert N. Genome sequence of the recombinant protein production host Pichia pastoris. Nat. Biotechnol. 2009. V. 27. P. 561–566. DOI 10.1038/nbt.1544
- Mattanovich D., Jungo C., Wenger J., Dabros M., Maurer M. Yeast Suspension Culture. Industrial Scale Suspension Culture of Living Cells. 2014. P. 94–129. DOI: 10.1002/9783527683321.ch02
- Valli M., Tatto, N. E., Peymann, A., Gruber, C., Landes, N., Ekker, H., Thallinger, G. G., Mattanovich, D., Gasser, B., Graf, A. B. Curation of the genome annotation of Pichia pastoris (Komagataella phafi) CBS7435 from gene level to protein function. FEMS Yeast Research. 2016. V. 16(6). P. 1–12. DOI: 10. 1093/femsyr/fow051
- Bridges HR, Fearnley IM, Hirst J. The subunit composition of mitochondrial NADH:ubiquinone oxidoreductase (complex I) from Pichia pastoris. Molecular & Cellular Proteomics. 2010. V. 9. P. 2318–2326. DOI: 10.1074/mcp.M110.001255
- Ternes P., Wobbe T., Schwarz M., Albrecht S., Feussner K., Riezman I., Cregg J.M., Heinz E., Riezman H., Feussner I., Warnecke D. Two pathways of sphingolipid biosynthesis are separated in the yeast Pichia pastoris. Journal of Biological Chemistry. 2011. V. 286. P. 11401–11414. DOI: 10.1074/jbc.M110.193094
- Yu A.Q., Zhu J.C., Zhang B., Xing L.-J., Li M.-C. Knockout of fatty acid desaturase genes in Pichia pastoris GS115 and its effect on the fatty acid biosynthesis and physiological consequences. Archives of Microbiology. 2012. V. 194. P. 1023–1032. DOI: 10.1007/s00203-012-0835-9
- Tomas-Gamisans M., Ferrer P., Albiol J. Integration and validation of the genome-scale metabolic models of Pichia pastoris: A comprehensive update of protein glycosylation pathways, lipid and energy metabolism. PLoS One. 2016. V. 11. P. e0148031. DOI: 10.1371/journal.pone.0148031
- Prielhofer R., Cartwright S.P., Graf A.B. et al. Pichia pastoris regulates its gene-specific response to different carbon sources at the transcriptional, rather than the translational, level. BMC Genomics. 2015. V. 16. P. 167. DOI: 10.1186/s12864-015-1393-8
- Liu Y., Wu C., Wang J., Mo W., Yu M. Codon optimization, expression, purifcation, and functional characterization of recombinant human IL-25 in Pichia pastoris. Applied Microbiology and Biotechnology. 2013. V. 97(24). P. 10349–10358. DOI: 10.1007/s00253-013-5264-4
- Forster J., Halbfeld C., Zimmermann M., Blank L.M. A blueprint of the amino acid biosynthesis network of hemiascomycetes. FEMS Yeast Research. 2014. V. 14(7). P. 1090–1100. DOI: 10.1111/1567-1364.12205
- Wang J.R., Li Y.Y., Liu D.N., Liu J.S., Li P., Chen L.Z., Xu S.D. Codon optimization signifcantly improves the expression level of α-Amylase gene from Bacillus licheniformis in Pichia pastoris. BioMed Research International. 2015. V. 248680. DOI: 10.1155/2015/248680
- He H., Wu S., Mei M., Ning J., Li C., Ma L., Zhang G., Yi L. A combinational strategy for efective heterologous production of functional human lysozyme in Pichia pastoris. Frontiers in Bioengineering and Biotechnology. 2020. V. 8. P. 1–12. DOI: 10.3389/fbioe.2020.00118
- Che Z., Cao X., Chen G., Liang Z. An efective combination of codon optimization, gene dosage, and process optimization for high-level production of fbrinolytic enzyme in Komagataella phafi (Pichia pastoris). BMC Biotechnology. 2020. V. 20(1). P. 1–13. DOI: 10.1186/s12896-020-00654-7
- Huang Y., Lin T., Lu L., Cai F., Lin J., Jiang Y., Lin Y. Codon pair optimization (CPO): A software tool for synthetic gene design based on codon pair bias to improve the expression of recombinant proteins in Pichia pastoris. Microbial Cell Factories. 2021. V. 20(1). P. 1–10. DOI: 10.1186/ s12934-021-01696-y
- Karaoğlan M., Erden-Karaoğlan F. Efect of codon optimization and promoter choice on recombinant endo-polygalacturonase production in Pichia pastoris. Enzyme and Microbial Technology. 2020. V. 139. P. 109589. DOI: 10.1016/j.enzmictec.2020.109589
- Aw R., Polizzi K.M. Can too many copies spoil the broth? Microbial Cell Factories. 2013. V. 12(1). P. 1–9. DOI: 10.1186/1475-2859-12-128
- Fadzil N.A., Lim S.K., Chew A.L., Khoo B.Y. Multiple gene copy number increases total protein expression and enzyme activity of DNA topoisomerase I in Pichia pastoris. World Academy of Sciences Journal. 2022. V. 4. DOI: 10.3892/wasj.2022.167
- Li P., Anumanthan A., Gao X.‐G., Ilangovan K., Suzara V.V., Düzgüneş N., Renugopalakrishnan V. Expression of recombinant proteins in Pichia pastoris. Applied Biochemistry and Biotechnology. 2007. V. 142(2). P. 105–124. DOI: 10.1007/s12010-007-0003-x
- Anggiani M., Helianti I., Abinawanto, A. Optimization of methanol induction for expression of synthetic gene Thermomyces lanuginosus lipase in Pichia pastoris. AIP Conference Proceeding. 2023. V. 020157 (2018). DOI: 10.1063/1.5064154
- Duan X.P., Gao J.Q., Zhou Y.J.J. Advances in engineering methylotrophic yeast for biosynthesis of valuable chemicals from methanol. Chinese Chemical Letters. 2018. V. 29. P. 681–686. DOI: 10.1016/j.cclet.2017.11.015
- Vogl T., Glieder A. Regulation of Pichia pastoris promoters and its consequences for protein production. New Biotechnology. 2013. V. 30(4). P. 385–404. DOI: 10.1016/j.nbt.2012.11.010
- Santoso A., Herawati N., Rubiana Y. Effect of methanol induction and incubation time on expression of human erythropoietin in methylotropic yeast Pichia pastoris. Makara Journal of Technology. 2012. V. 16(1). P. 29–34. DOI: 10.7454/mst.v16i1.1041
- Jia L., Li T., Wu Y., Wu C., Li H., Huang A. Enhanced human lysozyme production by Pichia pastoris via periodic glycerol and dissolved oxygen concentrations control. Applied Microbiology and Biotechnology. 2021. V. 105(3). P. 1041–1050. DOI: 10.1007/s00253-021-11100-9
- Gonçalves A.M., Pedro A.Q., Maia C., Sousa F., Queiroz J.A., Passarinha L.A. Pichia pastoris: A recombinant microfactory for antibodies and human membrane proteins. Journal of Microbiology and Biotechnology. 2013. V. 23(5). P. 587–601. DOI: 10.4014/jmb.1210.10063
- Yu.Y. Fan., Yang J., Zhao F., Lin Y., Han S. Comparative transcriptome and metabolome analyses reveal the methanol dissimilation pathway of Pichia pastoris. BMC Genomics. 2022. V. 23(1). P. 1–14. DOI: 10.1186/s12864-022-08592-8
- Vogl T., Sturmberger L., Kickenweiz T., Wasmayer R., Schmid C., Hatzl A., Gerstmann M. A., Pitzer J., Wagner M., Thallinger G.G., Geier M., Glieder A. A toolbox of diverse promoters related to methanol utilization: Functionally verifed parts for heterologous pathway expression in Pichia pastoris. ACS Synthetic Biology. 2016. V. 5(2). P. 172–186. DOI: 10.1021/acssynbio.5b00199/
- Ata Ö., Boy E., Güneş H., Çalik P. Codon optimization of xylA gene for recombinant glucose isomerase production in Pichia pastoris and fed-batch feeding strategies to fne-tune bioreactor performance. Bioprocess and Biosystems Engineering. 2015. V. 38(5). P. 889–903. DOI: 10.1007/s00449-014-1333-z
- Takagi S., Tsutsumi N., Terui Y., Kong X.Y., Yurimoto H., Sakai Y. Engineering the expression system for Komagataella phafi (Pichia pastoris): An attempt to develop a methanol-free expression system. FEMS Yeast Research. 2019. V. 19(6). P. 1–10. DOI: 10.1093/femsyr/foz059
- Prielhofer R., Maurer M., Klein J., Wenger J., Kiziak C., Gasser B. Induction without methanol: Novel regulated promoters enable high-level expression in Pichia pastoris. Microbial Cell Factories. 2013. V. 12. P. 5. DOI: 10.1186/1475-2859-12-5
- Iglesias-Figueroa B., Valdiviezo-Godina N., Siqueiros-Cendón T., Sinagawa-García S., Arévalo-Gallegos S., Rascón-Cruz Q. High-level expression of recombinant bovine lactoferrin in Pichia pastoris with antimicrobial activity. International Journal of Molecular Sciences. 2016. V. 17. P. E902. DOI: 10.3390/ijms17060902
- Jungo C., Marison I., von Stockar U. Regulation of alcohol oxidase of a recombinant Pichia pastoris Mut+ strain in transient continuous cultures. Journal of Biotechnology. 2007. V. 130. P. 236–246. DOI: 10.1016/j.jbiotec.2007.04.004
- Wang Z., Wang Y., Zhang D., Li J., Hua Z., Du G., Chen, J. Enhancement of cell viability and alkaline polygalacturonate lyase production by sorbitol co‐feeding with methanol in Pichia pastoris fermentation. Bioresource Technology. 2010. V. 101(4). P. 1318–1323. DOI: 10.1016/j.biortech.2009.09.025
- Çelik E., Çalık P., Oliver S.G. Metabolic flux analysis for recombinant protein production by Pichia pastoris using dual carbon sources: effects of methanol feeding rate. Biotechnol. Bioeng. 2010. V. 105. P. 317–329. DOI: 10.1002/bit.22543
- Zepeda A.B., Figueroa C.A., Abdalla D.S.P., Maranhão A.Q., Ulloa P.H., Pessoa Jr.A., Farías J.G. Biomarkers to evaluate the effects of temperature and methanol on recombinant Pichia pastoris. Brazilian Journal of Microbiology. 2014. V. 45. P. 475-483. DOI: 10.1590/S1517-83822014000200014
- Zepeda A.B., Figueroa C.A., Abdalla D.S.P., Maranhão A.Q., Ulloa P.H., Pessoa Jr.A., Farías J.G. HSF-1, HIF-1and HSP90 expression on recombinant Pichia pastoris under fed-batch fermentation. Brazilian Journal of Microbiology. 2014. V. 45(2). P. 485–490. DOI: 10.1590/s1517-83822014000200015
- García-Ortega X., Cámara E., Ferrer P., Albiol J., MontesinosSeguí J.L., Valero F. Rational development of bioprocess engineering strategies for recombinant protein production in Pichia pastoris (Komagataella phafi) using the methanol-free GAP promoter. Where do we stand? New Biotechnology. 2019. V. 53. P. 24–34.
- Arruda A., Reis V.C.B., Batista V.D.F., Daher B.S., Piva L.C., De Marco J.L., de Noraes L.M.P., Torres F.A.G. A constitutive expression system for Pichia pastoris based on the PGK1 promoter. Biotechnology Letters. 2016. V. 38(3). P. 509–517. DOI: 10.1007/s10529-015-2002-2
- Periyasamy S., Govindappa N., Sreenivas S., Sastry K. Isolation, characterization and evaluation of the Pichia pastoris sorbitol dehydrogenase promoter for expression of heterologous proteins. Protein Expression and Purifcation. 2013. V. 92(1). P. 128–133. DOI: 10.1016/j.pep.2013.09.008
- Liang S., Zou C., Lin Y., Zhang X., Ye Y. Identifcation and characterization of P GCW14: A novel, strong constitutive promoter of Pichia pastoris. Biotechnological Letters. 2013. V. 35(11). P. 1865–1871. DOI: 10.1007/s10529-013-1265-8