А.В. Комин1, Н.С. Лешукова2
1,2 ФГБОУ ВО Ярославский государственный технический университет (г. Ярославль, Россия)
1 kominav@ystu.ru, 2 leschukovan@yandex.ru
Постановка проблемы. Одним из стандартных видов исследований новых полимерных материалов и изделий из них медицинского назначения, предполагающих контакт с кровью, является тест на гемолиз. В настоящее время существуют различные подходы изучения гемолитических свойств полимерных материалов in vitro. Ввиду отсутствия единой стандартизированной методики теста на гемолиз исследователи по-разному его реализуют. В связи с этим возникает вопрос не только в достоверности результатов исследований, но и в возможности их сравнения.
Цель работы – анализ и обобщение мирового опыта оценки гемолитической активности полимерных материалов in vitro.
Результаты. Приведен анализ существующих подходов к оценке гемолитических свойств полимерных материалов. Показаны преимущества прямых методов исследования, предполагающие прямой контакт исследуемого материала с суспензией эритроцитов. Проанализированы и обобщены методические аспекты, включая выбор доноров крови, подготовки суспензии эритроцитов и образцов материала, время контакта материала с эритроцитами, условия центрифугирования и измерения характеристик системы, расчета и оценки результатов.
Практическая значимость. Настоящее исследование может служить научной основой для разработки новой, относительно простой и универсальной методики оценки гемолитических свойств полимерных материалов и изделий in vitro медицинского назначения.
Комин А.В., Лешукова Н.С. Оценка in vitro гемолитического действия полимерных материалов и изделий для использования в медицине // Технологии живых систем. 2024. T. 21. № 4. С. 80-92. DOI: https://doi.org/10.18127/j20700997-202404-09
- Lippi G., Cervellin G., Favaloro E., Plebani M. In vitro and in vivo hemolysis: An unresolve dispute in laboratory medicine. Berlin, Germany: Walterde Gruyter GmbH. 2012.
- ГОСТ ISO 10993-4-2020 Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 4 Исследования изделий, взаимодействующих с кровью. M.: Cтандартинформ. 2020. 47 с.
- Kaczmarek-Szczepanska B., Polkowska I., Pazdzior-Czapula K., Nowicka B., Gierszewska M., Michalska-Sionkowska M., Otrocka-Domagała I. Chitosan/Phenolic Compounds Scaffolds for Connective Tissue Regeneration // J. Funct. Biomater. 2023. V. 14. № 2. P. 69. DOI: 10.3390/jfb14020069
- Soundhar A., Jayakrishna K. Investigations on mechanical and morphological characterization of chitosan reinforced polymer nanocomposites // Materials Research Express (Online). 2019. V. 6. № 7. P. 075301. DOI: 10.1088/2053-1591/ab1288
- Jie X., Shiu B-C., Zhang Y., Wu H., Ye Y. Chitosan-Urushiolnanofiber membrane with enhanced acid resistance and broad-spectrum antibacterial activity // J. Carbohydrate Polymers. 2023. V. 312. № 15. P. 120792. DOI: 10.1016/j.carbpol.2023.120792
- Li Y., Zhu C., Fan D., Fu R., Ma P., Duan Z., Lei H., Chi L. Construction of porous sponge-like PVA-CMC-PEG hydrogels with pH-sensitivity via phase separation for wound dressing // International Journal of Polymeric Materials and Polymeric Biomaterials. 2020. V. 69. № 8. P. 505–515. DOI: 10.1080/00914037.2019.1581200
- Zhang F., Han X., Guo C., Yang H., Wang J., Wu X. Fibrous aramid hydrogel supported antibacterial agents for accelerating bacterial-infected wound healing // J. Mater SciEng C Mater Biol Appl. 2021. V. 121. P. 111833. DOI: 10.1016/j.msec.2020.111833
- Golafshan N., Rezahasani R., Tarkesh Esfahani M., Kharaziha M., Khorasani S.N. Nanohybrid hydrogels of laponite: PVA-Alginate as a potential wound healing material // J. Carbohydrate Polymers. 2017. V. 176. P. 392–401. DOI: 10.1016/j.carbpol.2017.08.070
- Sakthiguru N., Sithique M.A. Fabrication of bioinspired chitosan/gelatin/allantoinbiocomposite film for wound dressing application // Int. J. Biol. Macromol. 2020. V. 152. P. 873–883. DOI: 10.1016/j.ijbiomac.2020.02.289
- Tyeb S., Kumar N., Kumar A., Verma V. Flexible agar-sericin hydrogel film dressing for chronic wounds. Carbohydrate Polymers // J. Carbohydrate Polymers. 2018. V. 200. P. 572–582. DOI: 10.1016/j.carbpol.2018.08.030
- Pires A.L.R., de Azevedo Motta L., Dias A.M.A., de Sousa H.C., Moraes Â.M., Braga M.E.M. Towards wound dressings with improved properties: Effects of poly(dimethylsiloxane) on chitosan-alginate films loaded with thymol and beta-carotene // J. Materials Science and Engineering C. 2018. V. 93. P. 595–605. DOI: 10.1016/j.msec.2018.08.005
- Srisang S., Nasongkla N. Layer-by-layer dip coating of Foley urinary catheters by chlorhexidine-loaded micelles // J. of drug delivery science and technology. 2018. V. 49. P. 235–242. DOI: 10.1016/j.jddst.2018.11.019
- Pan H., Fan D., Duan Z., Zhu C., Fu R., Li X. Non-stick hemostasis hydrogels as dressings with bacterial barrier activity for cutaneous wound healing // J. Materials Science and Engineering: C. 2019. V. 105. P. 110118. DOI: 10.1016/j.msec.2019.110118
- Sethi S., Saruchi Kaith B.S., Kaur M., Sharma N., Kumar V. Cross-linked xanthan gum–starch hydrogels as promising materials for controlled drug delivery // Cellulose. 2020. V. 27. № 8. P. 4565–4589. DOI: 10.1007/s10570-020-03082-0
- Hu X.-J., Dong N.-G., Shi J.-W., Deng C., Li H.-D., Lu C.-F. Evaluation of a novel tetra-functional branched poly(ethylene glycol) crosslinker for manufacture of crosslinked, decellularized, porcine aortic valve leaflets // Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2013. V. 102. № 2. P. 322–336. DOI: 10.1002/jbm.b.33010
- Devine R., Goudie M., Singha P., Douglass M., Schmiedt C.W., Brisbois E.J., Handa H. Mimicking the endothelium: dual action heparinized nitric oxide releasing surface // ACS Applied Materials & Interfaces. 2020. V. 12. № 18. P. 20158–20171. DOI: 10.1021/acsami.9b22277
- Tamjid E., Bohlouli M., Mohammadi S., Alipour H., Nikkhah M. Sustainable drug release from highly‐porous and architecturally‐engineered composite scaffolds prepared by 3D printing // J. of Biomedical Materials Research. 2020. V. 108. № 6. P. 1426–1438. DOI: 10.1002/jbm.a.36914
- Li J., Chen L., Zhang X., Guan S. Enhancing biocompatibility and corrosion resistance of biodegradable Mg-Zn-Y-Nd alloy by preparing PDA/HA coating for potential application of cardiovascular biomaterials // Materials Science and Engineering: C. 2020. V. 109. P. 110607. DOI: 10.1016/j.msec.2019.110607
- Gao F., Hu Y., Li G., Liu S., Quan L., Yang Z., Wei Y., Pan C. Layer-by-layer deposition of bioactive layers on magnesium alloy stent materials to improve corrosion resistance and biocompatibility // Bioactive Materials. 2020. V. 5. № 3. P. 611–623. DOI: 10.1016/j.bioactmat.2020.04.016
- Pacharra S., McMahon S., Duffy P., Basnett P., Yu W., Seisel S., Stervbo U., Babel N., Roy I., Viebahn R., Wang W., Salber J. Cytocompatibility evaluation of a novel series of PEG-functionalized lactide-caprolactone copolymer biomaterials for cardiovascular applications // J. Frontiers in bioengineering and biotechnology. 2020. V. 13. № 8. P. 991. DOI: 10.3389/fbioe.2020.00991
- Jian Y., Zhu Y. Poly 3-Hydroxybutyrate 4-hydroxybutyrate (P34HB) as a potential polymer for drug-eluting coatings on metal coronary stents // Polymers. 2022. V. 14. № 5. P. 994. DOI: 10.3390/polym14050994
- Barros N.R., de Miranda M.C.R., Borges F.A., Gemeinder J.L.P., Mendonça R.J., de Cilli E.M., Herculano R.D. Natural rubber latex: development and in vitro characterization of a future transdermal patch for enuresis treatment // International journal of polymeric materials and polymeric biomaterials. 2017. V. 66. № 17. P. 871–876. DOI:10.1080/00914037.2017.1280795
- Yu X., Li G., Zheng Y., Gao J., Fu Y., Wang Q., Huang L., Pan X., Ding J. Invisible orthodontics by polymeric clear aligners molded on 3D-printed personalized dental models // Regenerative Biomaterials. 2022. V. 9. № 1. P. 1–12. DOI: 10.1093/rb/rbac007
- Yang L., Huo R., Zhang B. Dual functional coatings with antifogging and antimicrobial performances for endoscope lens, via facile adsorption-cross-linking strategy // J. Colloids and Surfaces B: Biointerfaces. 2021. V. 206. P. 111933. DOI: 10.1016/j.colsurfb.2021.111933
- Weber M., Steinle H., Golombek S., Hann L., Schlensak C., Wendel H.P., Avci-Adali M. Blood-Contacting Biomaterials: In Vitro Evaluation of the Hemocompatibility // Frontiers in bioengineering and biotechnology. 2018. V. 16. № 6. P. 99. DOI:10.3389/fbioe.2018.00099
- Методика определения гемолитического действия полимерных материалов и изделий "ин витро" (утв. Минздравом СССР 27.11.1985).
- ASTM F756-13. Standard Practice for Assessment of Hemolytic Properties of Materials
- ГОСТ ISO 10993-12-2015. Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 12. Приготовление проб и контрольные образцы.
- Zhang J., Wang D., Jiang X., He L., Fu L., Zhao Y., Wang Y., Mo H., Shen J. Multistructured vascular patches constructed via layer-by-layer self-assembly of heparin and chitosan for vascular tissue engineering applications // Chemical Engineering Journal. 2019. V. 370. № 15. P. 1057–1067. DOI: 10.1016/j.cej.2019.03.270
- Gao X., Liu K., Liu P., Bai X. Preparation and properties of cellulose acetate graft copolymer-coated adsorbent resin for hemoperfusion device // Journal of Applied Polymer Science. 2023. V. 140. № 19. P. 1–15. DOI: 10.1002/app.53895
- Liu W., Xi G., Yang X., Hao X., Wang M., FengY., Chen H., Shi C. Poly(lactide-co-glycolide) grafted hyaluronic acid based electrospun fibrous hemostatic fragments for sustainable anti-infection and immunoregulation // Journal of Materials Chemistry B. 2019. V. 7. № 32. P. 4997–5010. DOI: 10.1039/c9tb00659a
- Valliammai A., Selvaraj A., Mathumitha P., Aravindraja C., Pandian S.K. Polymeric antibiofilm coating comprising synergistic combination of citral and thymol prevents methicillin-resistant Staphylococcus aureus biofilm formation on titanium // J. Materials Science and Engineering: C. 2021. V. 121. P. 111863. DOI: 10.1016/j.msec.2021.111863
- Li Z., Wang S., Yang X., Liu H., Shan Y., Xu X., Shang S., Song, Z. Antimicrobial and antifouling coating constructed using rosin acid-based quaternary ammonium salt and N-vinylpyrrolidone via RAFT polymerization // Applied Surface Science. 2020. V. 530. P. 147193. DOI: 10.1016/j.apsusc.2020.147193
- Lett J.A., Sagadevan S., Paiman S., Mohammad F., Schirhagl R., Léonard E., Alshahateet S.F., Oh W.-C. Exploring the thumbprints of Ag-hydroxyapatite composite as a surface coating bone material for the implants // Journal of Materials Research and Technology. 2020. V. 9. № 6. P. 12824–12833. DOI: 10.1016/j.jmrt.2020.09.037
- Zhao C., Yuan X., Bai S., Sun P., Zhao Y., Zhu K., Li Xia R., Li X. Antifogging and antibacterial properties of amphiphilic coatings based on zwitterionic copolymers // Science China Technological Sciences. 2020. V. 64. № 4. P. 817–826. DOI: 10.1007/s11431-020-1699-3
- Gao S., Guo W., Chen M., Yuan Z., Wang M., Zhang Y., Liu S., Xi T., Guo Q. Fabrication and characterization of electrospunnanofibers composed of decellularized meniscus extracellular matrix and polycaprolactone for meniscus tissue engineering // Journal of Materials Chemistry B. 2017. V. 5. № 12. P. 2273–2285. DOI: 10.1039/c6tb03299k
- Chen Y., Murphy A., Scholz D., Geever L.M., Lyons J.G., Devine D.M. Surface-modified halloysite nanotubes reinforced poly(lactic acid) for use in biodegradable coronary stents // Journal of Applied Polymer Science. 2018. V. 135. № 30. P. 46521. DOI: 10.1002/app.46521
- Du J., Li Y., Wang J., Wang C., Liu D., Wang G., Liu S. Mechanically robust, self-healing, polymer blends and polymer/small molecule blend materials with high antibacterial activity // ACS Applied Materials and Interfaces. 2020. V. 12. № 24. P. 26966–26972. DOI: 10.1021/acsami.0c06591
- Kenawy E., Omer A.M., Tamer T.M., Elmeligy M.A., Eldin M.S.M. Fabrication of biodegradable gelatin/chitosan/cinnamaldehyde crosslinked membranes for antibacterial wound dressing applications // International Journal of Biological Macromolecules. 2019. V. 139. P. 440–448. DOI: 10.1016/j.ijbiomac.2019.07.191
- Wagner W.R., Kim S., Ye S.-H., Adamo A., Orizondo R.A., Jo J., Cho S.K. A biostable, anti-fouling zwitterionic polyurethane-urea based on PDMS for use in blood-contacting medical devices // Journal of Materials Chemistry B. 2020. V. 8. P. 8305–8314. DOI: 10.1039/d0tb01220c
- Mallick S.P., Panda S.P., GayatriA., KunaalY., Naresh C., Suman D.K., Samineni J., Siddiqui N., Singh B.N. Chitosan oligosaccharide based hydrogel: an insight into the mechanical, drug delivery, and antimicrobial studies // J. Biointerface Research in Applied Chemistry. 2021. V. 11. № 3. P. 10293–10300. DOI: 10.33263/BRIACl 13.1029310300
- Hossain S.S., Yadav S., Majumdar S., Krishnamurthy S., Pyare R., Roy P.K. A comparative study of physico-mechanical, bioactivity and hemolysis properties of pseudo-wollastonite and wollastonite glass-ceramic synthesized from solid wastes // Ceramics International. 2019. V. 46. № 3. P. 833–843. DOI: 10.1016/j.ceramint.2019.09.039
- Fan X., Hu M., Qin Z., Wang J., Chen X., Lei W., Ye W., Jin Q., Ren Ke-F., Ji J. Bactericidal and Hemocompatible Coating via the Mixed-Charged Copolymer // ACS Applied Materials and Interfaces. 2018. V. 10. № 12. P. 10428–10436. DOI: 10.1021/acsami.7b18889
- Kuo Z.-K., Fang M.-Y., Wu T.-Y., Yang T., Tseng H.-W., Chen C.-C., Cheng C.-M. Hydrophilic films: How hydrophilicity affects blood compatibility and cellular compatibility // Advances in Polymer Technology. 2018. V. 37. P. 1635–1642. DOI: 10.1002/adv.21820
- Li X., Wang X., Subramaniyan S., Liu Y., RaoJ., Zhang B. Hyperbranched Polyesters Based on Indole- and Lignin-Derived Monomeric Aromatic Aldehydes as Effective Nonionic Antimicrobial Coatings with Excellent Biocompatibility // Biomacromolecules. 2022. V. 23. № 1. P. 150–162. DOI: 10.1021/acs.biomac.1c01186
- Roymahapatra G., De D., Giri S., Mandal S.M. Microstructure and Thermal Behavior of a Biocompatible Naturally // International Journal of HIT Transaction on ECCN. 2018. V. 4. № 1A. P. 8–15.
- Qureshi D., Sahoo A., Mohanty B., Anis A., Kulikouskaya V., Hileuskaya K., Agabekov V., Sarkar P., Sekhar Ray S., Maji S., Pal K. Fabrication and characterization of poly(vinyl alcohol) and chitosan oligosaccharide-based blend films // Gels. 2021. V. 7. № 2. P. 55. DOI: 10.3390/gels7020055
- Fungmongkonsatean T., Jongjitwimol J., Paensuwan P., Nuamchit T., Siriwittayawan D., Kanokpanont S., Damrongsakkul S., Thitiwuthikiat P. Hemocompatibility Evaluation of Thai Bombyxmori Silk Fibroin and Its Improvement with Low Molecular Weight Heparin Immobilization // Polymers. 2022. V. 14. № 14. P. 2943. DOI:10.3390/polym14142943
- Zhou C., Song H., Loh J., She J., Deng L., Bo L. Grafting Antibiofilm Polymer Hydrogel film onto Catheter by SARA SI-ATRP // Journal of Biomaterials Science, Polymer Edition. 2018. V. 29. № 17. P. 1–27. DOI: 10.1080/09205063.2018.1507268
- ГОСТ Р 53079.4-2008 Технологии лабораторные клинические. Обеспечение качества клинических лабораторных исследований. Часть 4. Правила ведения преаналитического этапа. М.: Стандартинформ. 2009. 64 с.
- Heireman L., VanGeel P., Musger L., Heylen E., Uyttenbroeck W., UlrikStervbo U., Babel N., Roy I., Viebahn R., Wang W., Mahieu B. Causes, consequences and management of sample hemolysis in the clinical laboratory // J. Clinical Biochemistry. 2017. V. 50. № 18. P. 1317–1322. DOI: 10.1016/j.clinbiochem.2017.09.013
- ISO 17665-1:2016 Sterilization of health care products – Moist heat – Part 1: Requirements for development, validation and routine control of a sterilization process for medical devices. М.: Стандартинформ. 2016. 33 с.
- Urbina A., Godoy-Silva R., Hoyos M., Camacho M. Acute hydrodynamic damage induced by SPLITT fractionation and centrifugation in red blood cells // Journal of Chromatography. B. 2016. V. 1020. № 1. P. 53–61. DOI: 10.1016/j.jchromb.2016.03.025