350 rub
Journal Technologies of Living Systems №4 for 2024 г.
Article in number:
In-vitro evaluation of the hemolytic effect of polymeric materials and products for use in medicine
Type of article: overview article
DOI: 10.18127/j20700997-202404-09
UDC: 678.01:612.111.45
Authors:

A.V. Komin1, N.S. Leshukova2

1,2 FGBOU VO Yaroslavl State Technical University (Yaroslavl, Russia)

1 kominav@ystu.ru, 2 leschukovan@yandex.ru

Abstract:

The paper is devoted to the review of methods for studying the hemolytic action of polymeric materials and products made of them in-vitro. Classification and discussion of different methods are given. The main emphasis is made on the method involving direct contact of the material with blood. The issues of blood donor selection, its preparation for analysis, preparation of test samples, positive and negative control samples, conditions of erythrocyte suspension preparation, sample incubation, centrifugation, measurements, as well as methods of calculation and interpretation of results are summarized and discussed. It is revealed that researchers do not adhere to a single methodology for assessing the hemolytic activity of in-vitro polymeric materials. The differences are in the use of human blood or different animals, the ratio of the sample size of the test material to the volume of blood or erythrocyte suspension, the concentration of erythrocytes in the samples, the media for dilution of blood or erythrocyte mass during sample preparation, incubation time, time and relative acceleration or centrifuge revolutions during sample centrifugation.

Pages: 80-92
For citation

Komin A.V., Leshukova N.S. In-vitro evaluation of the hemolytic effect of polymeric materials and products for use in medicine. Technologies of Living Systems. 2024. V. 21. № 4. Р. 80-92. DOI: https://doi.org/10.18127/j20700997-202404-09 (In Russian).

References
  1. Lippi G., Cervellin G., Favaloro E., Plebani M. In vitro and in vivo hemolysis: An unresolve dispute in laboratory medicine. Berlin, Germany: Walterde Gruyter GmbH. 2012.
  2. GOST ISO 10993-4-2020 Izdeliya medicinskie. Ocenka biologicheskogo dejstviya medicinskih izdelij. CHast' 4 Is-sledovaniya izdelij, vzaimodejstvuyushchih s krov'yu. M.: Standartinform. 2020. 47 s. (in Russian).
  3. Kaczmarek-Szczepanska B., Polkowska I., Pazdzior-Czapula K., Nowicka B., Gierszewska M., Michalska-Sionkowska M., Otrocka-Domagała I. Chitosan/Phenolic Compounds Scaffolds for Connective Tissue Regeneration. J. Funct. Biomater. 2023. V. 14. № 2. P. 69. DOI: 10.3390/jfb14020069
  4. Soundhar A., Jayakrishna K. Investigations on mechanical and morphological characterization of chitosan reinforced polymer nanocomposites. Materials Research Express (Online). 2019. V. 6. № 7. P. 075301. DOI: 10.1088/2053-1591/ab1288
  5. Jie X., Shiu B-C., Zhang Y., Wu H., Ye Y. Chitosan-Urushiolnanofiber membrane with enhanced acid resistance and broad-spectrum antibacterial activity. J. Carbohydrate Polymers. 2023. V. 312. № 15. P. 120792. DOI: 10.1016/j.carbpol.2023.120792
  6. Li Y., Zhu C., Fan D., Fu R., Ma P., Duan Z., Lei H., Chi L. Construction of porous sponge-like PVA-CMC-PEG hydrogels with pH-sensitivity via phase separation for wound dressing. International Journal of Polymeric Materials and Polymeric Biomaterials. 2020. V. 69. № 8. P. 505–515. DOI: 10.1080/00914037.2019.1581200
  7. Zhang F., Han X., Guo C., Yang H., Wang J., Wu X. Fibrous aramid hydrogel supported antibacterial agents for accelerating bacterial-infected wound healing. J. Mater SciEng C Mater Biol Appl. 2021. V. 121. P. 111833. DOI: 10.1016/j.msec.2020.111833
  8. Golafshan N., Rezahasani R., Tarkesh Esfahani M., Kharaziha M., Khorasani S.N. Nanohybrid hydrogels of laponite: PVA-Alginate as a potential wound healing material. J. Carbohydrate Polymers. 2017. V. 176. P. 392–401. DOI: 10.1016/j.carbpol.2017.08.070
  9. Sakthiguru N., Sithique M.A. Fabrication of bioinspired chitosan/gelatin/allantoinbiocomposite film for wound dressing application. Int. J. Biol. Macromol. 2020. V. 152. P. 873–883. DOI: 10.1016/j.ijbiomac.2020.02.289
  10. Tyeb S., Kumar N., Kumar A., Verma V. Flexible agar-sericin hydrogel film dressing for chronic wounds. Carbohydrate Polymers. J. Carbohydrate Polymers. 2018. V. 200. P. 572–582. DOI: 10.1016/j.carbpol.2018.08.030
  11. Pires A.L.R., de Azevedo Motta L., Dias A.M.A., de Sousa H.C., Moraes Â.M., Braga M.E.M. Towards wound dressings with improved properties: Effects of poly(dimethylsiloxane) on chitosan-alginate films loaded with thymol and beta-carotene. J. Materials Science and Engineering C. 2018. V. 93. P. 595–605. DOI: 10.1016/j.msec.2018.08.005
  12. Srisang S., Nasongkla N. Layer-by-layer dip coating of Foley urinary catheters by chlorhexidine-loaded micelles. J. of drug delivery science and technology. 2018. V. 49. P. 235–242. DOI: 10.1016/j.jddst.2018.11.019
  13. Pan H., Fan D., Duan Z., Zhu C., Fu R., Li X. Non-stick hemostasis hydrogels as dressings with bacterial barrier activity for cutaneous wound healing. J. Materials Science and Engineering: C. 2019. V. 105. P. 110118. DOI: 10.1016/j.msec.2019.110118
  14. Sethi S., Saruchi Kaith B.S., Kaur M., Sharma N., Kumar V. Cross-linked xanthan gum–starch hydrogels as promising materials for controlled drug delivery. Cellulose. 2020. V. 27. № 8. P. 4565–4589. DOI: 10.1007/s10570-020-03082-0
  15. Hu X.-J., Dong N.-G., Shi J.-W., Deng C., Li H.-D., Lu C.-F. Evaluation of a novel tetra-functional branched poly(ethylene glycol) crosslinker for manufacture of crosslinked, decellularized, porcine aortic valve leaflets. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2013. V. 102. № 2. P. 322–336. DOI: 10.1002/jbm.b.33010
  16. Devine R., Goudie M., Singha P., Douglass M., Schmiedt C.W., Brisbois E.J., Handa H. Mimicking the endothelium: dual action heparinized nitric oxide releasing surface. ACS Applied Materials & Interfaces. 2020. V. 12. № 18. P. 20158–20171. DOI: 10.1021/acsami.9b22277
  17. Tamjid E., Bohlouli M., Mohammadi S., Alipour H., Nikkhah M. Sustainable drug release from highly‐porous and architecturally‐engineered composite scaffolds prepared by 3D printing. J. of Biomedical Materials Research. 2020. V. 108. № 6. P. 1426–1438. DOI: 10.1002/jbm.a.36914
  18. Li J., Chen L., Zhang X., Guan S. Enhancing biocompatibility and corrosion resistance of biodegradable Mg-Zn-Y-Nd alloy by preparing PDA/HA coating for potential application of cardiovascular biomaterials. Materials Science and Engineering: C. 2020. V. 109. P. 110607. DOI: 10.1016/j.msec.2019.110607
  19. Gao F., Hu Y., Li G., Liu S., Quan L., Yang Z., Wei Y., Pan C. Layer-by-layer deposition of bioactive layers on magnesium alloy stent materials to improve corrosion resistance and biocompatibility. Bioactive Materials. 2020. V. 5. № 3. P. 611–623. DOI: 10.1016/j.bioactmat.2020.04.016
  20. Pacharra S., McMahon S., Duffy P., Basnett P., Yu W., Seisel S., Stervbo U., Babel N., Roy I., Viebahn R., Wang W., Salber J. Cytocompatibility evaluation of a novel series of PEG-functionalized lactide-caprolactone copolymer biomaterials for cardiovascular applications. J. Frontiers in bioengineering and biotechnology. 2020. V. 13. № 8. P. 991. DOI: 10.3389/fbioe.2020.00991
  21. Jian Y., Zhu Y. Poly 3-Hydroxybutyrate 4-hydroxybutyrate (P34HB) as a potential polymer for drug-eluting coatings on metal coronary stents. Polymers. 2022. V. 14. № 5. P. 994. DOI: 10.3390/polym14050994
  22. Barros N.R., de Miranda M.C.R., Borges F.A., Gemeinder J.L.P., Mendonça R.J., de Cilli E.M., Herculano R.D. Natural rubber latex: development and in vitro characterization of a future transdermal patch for enuresis treatment. International journal of polymeric materials and polymeric biomaterials. 2017. V. 66. № 17. P. 871–876. DOI:10.1080/00914037.2017.1280795 
  23. Yu X., Li G., Zheng Y., Gao J., Fu Y., Wang Q., Huang L., Pan X., Ding J. Invisible orthodontics by polymeric clear aligners molded on 3D-printed personalized dental models. Regenerative Biomaterials. 2022. V. 9. № 1. P. 1–12. DOI: 10.1093/rb/rbac007
  24. Yang L., Huo R., Zhang B. Dual functional coatings with antifogging and antimicrobial performances for endoscope lens, via facile adsorption-cross-linking strategy. J. Colloids and Surfaces B: Biointerfaces. 2021. V. 206. P. 111933. DOI: 10.1016/j.colsurfb. 2021.111933
  25. Weber M., Steinle H., Golombek S., Hann L., Schlensak C., Wendel H.P., Avci-Adali M. Blood-Contacting Biomaterials: In Vitro Evaluation of the Hemocompatibility. Frontiers in bioengineering and biotechnology. 2018. V. 16. № 6. P. 99. DOI:10.3389/fbioe.2018.00099
  26. Metodika opredeleniya gemoliticheskogo dejstviya polimernyh materialov i izdelij "in vitro" (utv. Minzdravom SSSR 27.11.1985). (in Russian).
  27. ASTM F756-13. Standard Practice for Assessment of Hemolytic Properties of Materials
  28. GOST ISO 10993-12-2015. Izdeliya medicinskie. Ocenka biologicheskogo dejstviya medicinskih izdelij. CHast' 12. Prigotovlenie prob i kontrol'nye obrazcy. (in Russian).
  29. Zhang J., Wang D., Jiang X., He L., Fu L., Zhao Y., Wang Y., Mo H., Shen J. Multistructured vascular patches constructed via layer-by-layer self-assembly of heparin and chitosan for vascular tissue engineering applications. Chemical Engineering Journal. 2019. V. 370. № 15. P. 1057–1067. DOI: 10.1016/j.cej.2019.03.270
  30. Gao X., Liu K., Liu P., Bai X. Preparation and properties of cellulose acetate graft copolymer-coated adsorbent resin for hemoperfusion device. Journal of Applied Polymer Science. 2023. V. 140. № 19. P. 1–15. DOI: 10.1002/app.53895
  31. Liu W., Xi G., Yang X., Hao X., Wang M., FengY., Chen H., Shi C. Poly(lactide-co-glycolide) grafted hyaluronic acid based electrospun fibrous hemostatic fragments for sustainable anti-infection and immunoregulation. Journal of Materials Chemistry B. 2019. V. 7. № 32. P. 4997–5010. DOI: 10.1039/c9tb00659a
  32. Valliammai A., Selvaraj A., Mathumitha P., Aravindraja C., Pandian S.K. Polymeric antibiofilm coating comprising synergistic combination of citral and thymol prevents methicillin-resistant Staphylococcus aureus biofilm formation on titanium. J. Materials Science and Engineering: C. 2021. V. 121. P. 111863. DOI: 10.1016/j.msec.2021.111863
  33. Li Z., Wang S., Yang X., Liu H., Shan Y., Xu X., Shang S., Song, Z. Antimicrobial and antifouling coating constructed using rosin acid-based quaternary ammonium salt and N-vinylpyrrolidone via RAFT polymerization. Applied Surface Science. 2020. V. 530. P. 147193. DOI: 10.1016/j.apsusc.2020.147193
  34. Lett J.A., Sagadevan S., Paiman S., Mohammad F., Schirhagl R., Léonard E., Alshahateet S.F., Oh W.-C. Exploring the thumbprints of Ag-hydroxyapatite composite as a surface coating bone material for the implants. Journal of Materials Research and Technology. 2020. V. 9. № 6. P. 12824–12833. DOI: 10.1016/j.jmrt.2020.09.037
  35. Zhao C., Yuan X., Bai S., Sun P., Zhao Y., Zhu K., Li Xia R., Li X. Antifogging and antibacterial properties of amphiphilic coatings based on zwitterionic copolymers. Science China Technological Sciences. 2020. V. 64. № 4. P. 817–826. DOI: 10.1007/s11431-020-1699-3
  36. Gao S., Guo W., Chen M., Yuan Z., Wang M., Zhang Y., Liu S., Xi T., Guo Q. Fabrication and characterization of electrospunnanofibers composed of decellularized meniscus extracellular matrix and polycaprolactone for meniscus tissue engineering. Journal of Materials Chemistry B. 2017. V. 5. № 12. P. 2273–2285. DOI: 10.1039/c6tb03299k
  37. Chen Y., Murphy A., Scholz D., Geever L.M., Lyons J.G., Devine D.M. Surface-modified halloysite nanotubes reinforced poly(lactic acid) for use in biodegradable coronary stents. Journal of Applied Polymer Science. 2018. V. 135. № 30. P. 46521. DOI: 10.1002/app.46521
  38. Du J., Li Y., Wang J., Wang C., Liu D., Wang G., Liu S. Mechanically robust, self-healing, polymer blends and polymer/small molecule blend materials with high antibacterial activity. ACS Applied Materials and Interfaces. 2020. V. 12. № 24. P. 26966–26972. DOI: 10.1021/acsami.0c06591
  39. Kenawy E., Omer A.M., Tamer T.M., Elmeligy M.A., Eldin M.S.M. Fabrication of biodegradable gelatin/chitosan/cinnamaldehyde crosslinked membranes for antibacterial wound dressing applications. International Journal of Biological Macromolecules. 2019. V. 139. P. 440–448. DOI: 10.1016/j.ijbiomac.2019.07.191
  40. Wagner W.R., Kim S., Ye S.-H., Adamo A., Orizondo R.A., Jo J., Cho S.K. A biostable, anti-fouling zwitterionic polyurethane-urea based on PDMS for use in blood-contacting medical devices. Journal of Materials Chemistry B. 2020. V. 8. P. 8305–8314. DOI: 10.1039/d0tb01220c
  41. Mallick S.P., Panda S.P., GayatriA., KunaalY., Naresh C., Suman D.K., Samineni J., Siddiqui N., Singh B.N. Chitosan oligosaccharide based hydrogel: an insight into the mechanical, drug delivery, and antimicrobial studies. J. Biointerface Research in Applied Chemistry. 2021. V. 11. № 3. P. 10293–10300. DOI: 10.33263/BRIACl 13.1029310300
  42. Hossain S.S., Yadav S., Majumdar S., Krishnamurthy S., Pyare R., Roy P.K. A comparative study of physico-mechanical, bioactivity and hemolysis properties of pseudo-wollastonite and wollastonite glass-ceramic synthesized from solid wastes. Ceramics International. 2019. V. 46. № 3. P. 833–843. DOI: 10.1016/j.ceramint.2019.09.039
  43. Fan X., Hu M., Qin Z., Wang J., Chen X., Lei W., Ye W., Jin Q., Ren Ke-F., Ji J. Bactericidal and Hemocompatible Coating via the Mixed-Charged Copolymer. ACS Applied Materials and Interfaces. 2018. V. 10. № 12. P. 10428–10436. DOI: 10.1021/acsami.7b18889
  44. Kuo Z.-K., Fang M.-Y., Wu T.-Y., Yang T., Tseng H.-W., Chen C.-C., Cheng C.-M. Hydrophilic films: How hydrophilicity affects blood compatibility and cellular compatibility. Advances in Polymer Technology. 2018. V. 37. P. 1635–1642. DOI: 10.1002/adv.21820
  45. Li X., Wang X., Subramaniyan S., Liu Y., RaoJ., Zhang B. Hyperbranched Polyesters Based on Indole- and Lignin-Derived Monomeric Aromatic Aldehydes as Effective Nonionic Antimicrobial Coatings with Excellent Biocompatibility. Biomacromolecules. 2022. V. 23. № 1. P. 150–162. DOI: 10.1021/acs.biomac.1c01186
  46. Roymahapatra G., De D., Giri S., Mandal S.M. Microstructure and Thermal Behavior of a Biocompatible Naturally. International Journal of HIT Transaction on ECCN. 2018. V. 4. № 1A. P. 8–15.
  47. Qureshi D., Sahoo A., Mohanty B., Anis A., Kulikouskaya V., Hileuskaya K., Agabekov V., Sarkar P., Sekhar Ray S., Maji S., Pal K. Fabrication and characterization of poly(vinyl alcohol) and chitosan oligosaccharide-based blend films. Gels. 2021. V. 7. № 2. P. 55. DOI:10.3390/gels7020055
  48. Fungmongkonsatean T., Jongjitwimol J., Paensuwan P., Nuamchit T., Siriwittayawan D., Kanokpanont S., Damrongsakkul S., Thitiwuthikiat P. Hemocompatibility Evaluation of Thai Bombyxmori Silk Fibroin and Its Improvement with Low Molecular Weight Heparin Immobilization. Polymers. 2022. V. 14. № 14. P. 2943. DOI:10.3390/polym14142943
  49. Zhou C., Song H., Loh J., She J., Deng L., Bo L. Grafting Antibiofilm Polymer Hydrogel film onto Catheter by SARA SI-ATRP. Journal of Biomaterials Science, Polymer Edition. 2018. V. 29. № 17. P. 1–27. DOI: 10.1080/09205063.2018.1507268
  50. GOST Р 53079.4-2008 Tekhnologii laboratornye klinicheskie. Obespechenie kachestva klinicheskih laboratornyh issledovanij. CHast' 4. Pravila vedeniya preanaliticheskogo etapa. М.: Standartinform. 2009. 64 s. (in Russian).
  51. Heireman L., VanGeel P., Musger L., Heylen E., Uyttenbroeck W., UlrikStervbo U., Babel N., Roy I., Viebahn R., Wang W., Mahieu B. Causes, consequences and management of sample hemolysis in the clinical laboratory. J. Clinical Biochemistry. 2017. V. 50. № 18. P. 1317–1322. DOI: 10.1016/j.clinbiochem.2017.09.013
  52. ISO 17665-1:2016 Sterilization of health care products – Moist heat – Part 1: Requirements for development, validation and routine control of a sterilization process for medical devices. М.: Standartinform. 2016. 33 s.
  53. Urbina A., Godoy-Silva R., Hoyos M., Camacho M. Acute hydrodynamic damage induced by SPLITT fractionation and centrifugation in red blood cells. Journal of Chromatography. B. 2016. V. 1020. № 1. P. 53–61. DOI: 10.1016/j.jchromb.2016.03.025
Date of receipt: 29.01.2024
Approved after review: 26.02.2024
Accepted for publication: 22.10.2024