350 руб
Журнал «Технологии живых систем» №3 за 2024 г.
Статья в номере:
Контрольные точки иммунитета и их растворимые формы при опухолях костей
Тип статьи: обзорная статья
DOI: https://doi.org/10.18127/j20700997-202403-03
УДК: 616.71-006-074 : 612.017.1
Авторы:

Н.Е. Кушлинский1, А.А. Алфёров2, Ю.Б. Кузьмин3, П.Л. Прищеп4, И.С. Черномаз5, Н.Ю. Соколов6, И.Н. Кузнецов7, И.С. Стилиди8

1,2,4-6,8 ФГБУ «Национальный медицинский исследовательский центр (НМИЦ) онкологии им. Н.Н. Блохина» Минздрава России (Москва, Россия)

3,7 ФГБОУ ВО «Российский университет медицины» Минздрава России (Москва, Россия)

1 kne3108@gmail.com, 2 aleksandr.alferov@yahoo.com, 3 yriikuzmin@yandex.com, 4 Paulig92@mail.ru, 5 marvel2602@mail.ru, 6 strivp@mail.ru, 7 npkredo@yandex.ru, 8 ronc@list.ru

Аннотация:

Постановка проблемы. Первичные опухоли костей – редкие и гетерогенные злокачественные новообразования, отличаются агрессивным клиническим течением, низкой чувствительностью к лекарственной терапии и неблагоприятным прогнозом. Неоспорим тот факт, что у больных саркомами костей нарушения молекулярно-биологических процессов, в том числе и противоопухолевого иммунитета, лежат в основе клеточной пролиферации, инвазии и метастазирования. Полагают, что иммунотерапия может быть потенциально многообещающим методом лечения различных злокачественных опухолей, в том числе и сарком костей. При этом, в регуляции противоопухолевого иммунитета у онкологических больных играют важную роль контрольные точки иммунитета (КТИ) и среди них сигнальная система PD-1/PD-L1, которая включает рецептор программируемой гибели клетки PD-1 (programmed cell death protein 1) и его лиганды (PD-L1, PD-L2).

Цель работы – анализ значимости контрольных точек иммунитета и их растворимых форм при онкологических заболеваниях.

Результаты. Представлены данные литературы и собственные результаты исследования различных КТИ при опухолях костей. Они не однозначны, а порой и крайне противоречивы, однако большинство из них указывают на их важную значимость в оценке клинического течения и прогноза заболевания, что свидетельствует о перспективах современного направления исследований по иммунотерапии первичных опухолей костей.

Практическая значимость. В настоящее время получены первые результаты по изучению КТИ у больных опухолями костей, которые указывают о перспективах иммунотерапии этих заболеваний.

Страницы: 7-36
Для цитирования

Кушлинский Н.Е., Алфёров А.А., Кузьмин Ю.Б., Прищеп П.Л., Черномаз И.С., Соколов Н.Ю., Кузнецов И.Н., Стилиди И.С.
Контрольные точки иммунитета и их растворимые формы при опухолях костей // Технологии живых систем. 2024. T. 21. № 3. С. 7-36. DOI: https://doi.org/10.18127/j20700997-202403-03

Список источников
  1. Group ESESNW. Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up // Ann. Oncol. 2014. V. 25. Suppl. 3. P. 113–123.
  2. Casali P.G., Abecassis N., Aro H.T. et al. Soft tissue and visceral sarcomas: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up // Ann. Oncol. 2018. V. 29. Suppl. 4. P. iv51–iv67.
  3. Unni K.K., Inwards C.Y. Dahlin’s bone tumors: general aspects and data on 10165 cases. Philadelphia: Lippincott Williams & Wilkins, 2006.
  4. Soft Tissue and Bone Tumours. WHO Classification of Tumours, 5th Edition. V. 3. Publisher‏: World Health Organization. 5th edition. 2020. 368 p.
  5. Chavin G., Sheinin Y., Crispen P.L. et al. Expression of immunosuppresive B7-H3 ligand by hormone-treated prostate cancer tumors and metastases // Clin. Cancer Res. 2009. V. 15. № 6. P. 2174–2180.
  6. Wang L., Zhang Q., Chen W. et al. B7-H3 is overexpressed in patients suffering osteosarcoma and associated with tumor aggressiveness and metastasis // PLoS One. 2013. V. 8. № 8. P. e70689.
  7. Maeda N., Yoshimura K., Yamamoto S. et al. Expression of B7-H3, a potential factor of tumor immune evasion in combination with the number of regulatory T cells, affects against recurrence-free survival in breast cancer patients // Ann. Surg. Oncol. 2014. V. 21. Suppl. 4. P. 546–555.
  8. Kang F.-B., Wang L., Jia H.-C. et al. B7-H3 promotes aggression and invasion of hepatocellular carcinoma by targeting epithelial-to-mesenchymal transition via JAK2/STAT3/Slug signaling pathway // Cancer Cell Int. 2015. V. 15. P. 45.
  9. Fernández L., Metais J.Y., Escudero A. et al. Memory T cells expressing an NKG2D-CAR efficiently target osteosarcoma cells. // Clin. Cancer Res. 2017. V. 23. № 19. P. 5824–5835.
  10. McEachron T.A., Triche T.J., Sorenson L. et al. Profiling targetable immune checkpoints in osteosarcoma // Oncoimmunology. 2018. V. 7. № 12. P. e1475873.
  11. Kyi C., Postow M.A. Checkpoint blocking antibodies in cancer immunotherapy // FEBS Lett. 2014. V. 588. № 2. P. 368–376.
  12. Tsukahara, T., Emori M., Murata K. et al. The future of immunotherapy for sarcoma // Expert. Opin. Biol. Ther. 2016. V. 16. № 8. P. 1049–1057.
  13. Kabir T.F., Chauhan A., Anthony L. et al. Immune Checkpoint Inhibitors in Pediatric Solid Tumors: Status in 2018 // Ochsner J. Winter. 2018. V. 18. № 4. P. 370–376.
  14. Huang H.F., Zhu H., Yang X.T. et al. Progress in Research on Tumor Immune PD-1/PD-L1 Signaling Pathway in Malignant Bone Tumors // Zhonghua Zhong Liu Za Zhi. 2019. V. 41. № 6. P. 410–414.
  15. Shen J.K., Cote G.M., Choy E. et al. Programmed cell death ligand 1 expression in osteosarcoma // Cancer Immunol. Res. 2014. V. 2. № 7. P. 690–698.
  16. Chowdhury F., Dunn S., Mitchell S. et al. PD-L1 and CD8+PD1+ lymphocytes exist as targets in the pediatric tumor microenvironment for immunomodulatory therapy // OncoImmunology. 2015. V. 4. № 10. P. e1029701.
  17. Lussier D.M., O'Neill L., Nieves L.M. et al. Enhanced T-cell immunity to osteosarcoma through antibody blockade of PD-1/PD-L1 interactions // J. Immunother. 2015. V. 38. № 3. P. 96–106.
  18. Koirala P., Roth M.E., Gill J. et al. Immune infiltration and PD-L1 expression in the tumor microenvironment are prognostic in osteosarcoma // Sci. Rep. 2016. V. 6. P. 30093.
  19. Costa Arantes D.A., Goncalves A.S., Jham B.C. et al. Evaluation of HLA-G, HLA-E, and PD-L1 proteins in oral osteosarcomas // Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2017. V. 123. № 6. P.188–196.
  20. Liao Y., Chen L., Feng Y. et al. Targeting programmed cell death ligand 1 by CRISPR/Cas9 in osteosarcoma cells // Oncotarget. 2017. V. 8. № 18. P. 30276-30287.
  21. Torabi A., Amaya C.N., Wians F.H. Jr. et al. PD-1 and PD-L1 expression in bone and soft tissue sarcomas // Pathology. 2017. V. 49. № 5. P. 506–513.
  22. Zhu Z., Jin Z., Zhang M. et al. Prognostic value of programmed death-ligand 1 in sarcoma: a meta-analysis // Oncotarget. 2017. V. 8. № 35. P. 59570–59580.
  23. Dhupkar P., Gordon N., Stewart J., Kleinerman E.S. Anti-PD-1 therapy redirects macrophages from an M2 to an M1 phenotype inducing regression of OS lung metastases // Cancer Med. 2018. V. 7. № 6. P. 2654–2664.
  24. Shimizu T., Fuchimoto Y., Fukuda K. et al. The effect of immune checkpoint inhibitors on lung metastases of osteosarcoma // J. Pediatr. Surg. 2017. V. 52. № 12. P. 2047–2050.
  25. Zheng B., Ren T., Huang Y. et al. PD-1 axis expression in musculoskeletal tumors and antitumor effect of nivolumab in osteosarcoma model of humanized mouse // J. Hematol. Oncol. 2018. V. 11. № 1. P. 16.
  26. Tawbi H.A., Burgess M., Bolejack V. et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial // Lancet Oncol. 2017. V. 18. № 11. P. 1493–1501.
  27. Gurney G.J. SA, Bulterys M. Malignant bone tumours. Bethesda, MD: National Cancer Institute, SEER Program; 1999.
  28. McCaughan G.J., Fulham M.J., Mahar A. et al. Programmed cell death-1 blockade in recurrent disseminated Ewing sarcoma // J. Hematol. Oncol. 2016. V. 9. № 1. P. 48.
  29. Grünewald T.G.P., Cidre-Aranaz F., Surdez D. et al. Ewing sarcoma // Nat. Rev. Dis. Primers. 2018. V. 4. № 1. P. 5.
  30. Gaspar N., Hawkins D.S., Dirksen U. et al. Ewing sarcoma: current management and future approaches through collaboration // J. Clin. Oncol. 2015. V. 33. № 27. P. 3036–3046.
  31. Rodriguez-Galindo C., Billups C.A., Kun L.E. et al. Survival After Recurrence of Ewing Tumors: The St Jude Children's Research Hospital Experience, 1979-1999 // Cancer. 2002. V. 94. № 2. P. 561–569.
  32. Bacci G., Ferrari S., Longhi A. et al. Therapy and Survival After Recurrence of Ewing's Tumors: The Rizzoli Experience in 195 Patients Treated With Adjuvant and Neoadjuvant Chemotherapy From 1979 to 1997 // Ann. Oncol. 2003. V. 14. № 11. P. 1654–1659.
  33. Barker L.M., Pendergrass T.W., Sanders J.E., Hawkins D.S. Survival after recurrence of Ewing's sarcoma family of tumors // J. Clin. Oncol. 2005. V. 23. № 19. P. 4354–4362.
  34. Ohali A., Avigad S., Cohen I.J. et al. High frequency of genomic instability in Ewing family of tumors // Cancer Genet. Cytogenet. 2004. V. 150. № 1. P. 50–66.
  35. Ferreira B.I., Alonso J., Carrillo J. et al. Array CGH and gene-expression profiling reveals distinct genomic instability patterns associated with DNA repair and cell-cycle checkpoint pathways in Ewing's sarcoma // Oncogene. 2008. V. 27. № 14. P. 2084–2090.
  36. Machado I., Lopez-Guerrero J.A., Scotlandi K. et al. Immunohistochemical analysis and prognostic significance of PD-L1, PD-1, and CD8+ tumor-infiltrating lymphocytes in Ewing's sarcoma family of tumors (ESFT) // Virchows Arch. 2018. V. 472. № 5. P. 815–824.
  37. Kim C., Kim E.K., Jung H. et al. Prognostic implications of PD-L1 expression in patients with soft tissue sarcoma // BMC Cancer. 2016. V. 16. P. 434.
  38. Angelini A., Guerra G., Mavrogenis A.F. et al. Clinical outcome of central conventional chondrosarcoma // J. Surg. Oncol. 2012. V. 106. № 8. P. 929–937.
  39. Hogendoorn P.C. Chondrosarcoma (grade I-III), including primary and secondary variants and periosteal chondrosarcoma, dedifferentiated chondrosarcoma, mesenchymal chondrosarcoma and clear cell chondrosarcoma. In: Fletcher C.D.M., Bridge J.A., Hogendoorn P.C. et al. (eds). WHO Classification of Tumours of Soft Tissue and Bone. 4th edn. IARC Press: Lyon, France, 2013. P. 264–274.
  40. Bovée J.V., Hogendoorn P.C., Wunder J.S., Alman B.A. Cartilage tumours and bone development: molecular pathology and possible therapeutic targets // Nat. Rev. Cancer. 2010. V. 10. № 7. P. 481–488.
  41. Amary M.F., Bacsi K., Maggiani F. et al. IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours // J. Pathol. 2011. V. 224. № 3. P. 334–343.
  42. Gitelis S., Bertoni F., Picci P., Campanacci M. Chondrosarcoma of bone. The experience at the Istituto Ortopedico Rizzoli // J. Bone Jt. Surg. Am. 1981. V. 63. № 8. P. 1248–1257.
  43. Ahmed A.R., Tan T.S., Unni K.K. et al. Secondary chondrosarcoma in osteochondroma: report of 107 patients // Clin. Orthop. Relat. Res. 2003. V. 411. P. 193–206.
  44. Guide Line SIOT Study Group. La diagnosi e il trattamento del condrosarcoma // GIOT. 2011. V. 37. P. 18–26.
  45. Gelderblom H., Hogendoorn P.C., Dijkstra S.D. et al. The clinical approach towards chondrosarcoma // Oncologist. 2008. V. 13. № 3. P. 320–329.
  46. Riedel R.F., Larrier N., Dodd L. et al. The clinical management of chondrosarcoma // Curr. Treat. Options. Oncol. 2009. V. 10. № 1–2. P. 94–106.
  47. Kostine M., Cleven A.H., de Miranda N.F. et al. Analysis of PD-L1, T-cell infiltrate and HLA expression in chondrosarcoma indicates potential for response to immunotherapy specifically in the dedifferentiated subtype // Mod. Pathol. 2016. V. 29. № 9.
    P. 1028–1037.
  48. Yang X., Zhu G., Yang Z. et al. Expression of PD-L1/PD-L2 is associated with high proliferation index of Ki-67 but not with TP53 overexpression in chondrosarcoma // Int. J. Biol. Markers. 2018. V. 33. № 4. P. 507–513.
  49. Paoluzzi L., Cacavio A., Ghesani M. et al. Response to anti-PD1 therapy with nivolumab in metastatic sarcomas // Clin. Sarcoma Res. 2016. V. 6. P. 24.
  50. Walcott B.P., Nahed B.V., Mohyeldin A. et al. Chordoma: current concepts, management, and future directions // Lancet Oncol. 2012. V. 13. № 2. P. 69–76.
  51. SEER Cancer Stat Facts: Bone and Joint Cancer. National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/statfacts/html/bones.html
  52. Feng Y., Shen J., Gao Y. et al. Expression of programmed cell death ligand 1 (PD-L1) and prevalence of tumor-infiltrating lymphocytes (TILs) in chordoma // Oncotarget. 2015. V. 6. № 13. P. 11139–11149.
  53. Mathios D., Ruzevick J., Jackson C.M. et al. PD-1, PD-L1, PD-L2 expression in the chordoma microenvironment // J. Neurooncol. 2015. V. 121. № 2. P. 251–259.
  54. Zou M.X., Peng A.B., Lv G.H. et al. Expression of programmed death-1 ligand (PD-L1) in tumor-infiltrating lymphocytes is associated with favorable spinal chordoma prognosis // Am. J. Transl. Res. 2016. V. 8. № 7. P. 3274–3287.
  55. Resnick C.M., Margolis J., Susarla S.M. et al. Maxillofacial and axial/appendicular giant cell lesions: unique tumors or variants of the same disease? A comparison of phenotypic, clinical, and radiographic characteristics // J. Oral. Maxillofac. Surg. 2010. V. 68. № 1. P. 130–137.
  56. Balke M., Schremper L., Gebert C. et al. Giant cell tumor of bone: treatment and outcome of 214 cases // J. Cancer Res. Clin. Oncol. 2008. V. 134. № 9. P. 969–978.
  57. Beebe-Dimmer J.L., Cetin K., Fryzek J.P. et al. The epidemiology of malignant giant cell tumors of bone: an analysis of data from the Surveillance, Epidemiology and End Results Program (1975-2004) // Rare Tumors. 2009. V. 1. № 2. P. e52.
  58. Al-Sukaini A., Hornicek F.J., Peacock Z.S. et al. Immune Surveillance Plays a Role in Locally Aggressive Giant Cell Lesions of Bone // Clin. Orthop. Relat. Res. 2017. V. 475. № 12. P. 3071–3081.
  59. Schreuder W.H., Peacock Z.S., Ebb D. et al. Adjuvant antiangiogenic treatment for aggressive giant cell lesions of the jaw: a 20-year experience at Massachusetts General Hospital // J. Oral Maxillofac. Surg. 2017. V. 75. № 1. P. 105–118
  60. Enneking W.F. A system of staging musculoskeletal neoplasms // Clin. Orthop. Relat. Res. 1986. V. 204. P. 9–24.
  61. Peacock Z.S., Resnick C.M., Susarla S.M. et al. Do histologic criteria predict biologic behavior of giant cell lesions? // J. Oral. Maxillofac. Surg. 2012. V. 70. № 11. P. 2573–2580.
  62. Branstetter D.G., Nelson S.D., Manivel J.C. et al. Denosumab induces tumor reduction and bone formation in patients with giant-cell tumor of bone // Clin. Cancer Res. 2012. V. 18. № 16. P. 4415–4424.
  63. Gaston C.L., Grimer R.J., Parry M. et al. Current status and unanswered questions on the use of Denosumab in giant cell tumor of bone // Clin. Sarcoma Res. 2016. V. 6. № 1. P. 15.
  64. Ghert M., Simunovic N., Cowan R.W. et al. Properties of the stromal cell in giant cell tumor of bone // Clin. Orthop. Relat. Res. 2007. V. 459. P. 8–13.
  65. Fellenberg J., Saehr H., Lehner B., Depeweg D. A microRNA signature differentiates between giant cell tumor derived neoplastic stromal cells and mesenchymal stem cells // Cancer Lett. 2012. V. 321. № 2. P. 162–168.
  66. Sathyanarayanan V., Neelapu S.S. Cancer immunotherapy: strategies for personalization and combinatorial approaches // Mol. Oncol. 2015. V. 9. № 10. P. 2043–2053.
  67. Wang L., Kang F.B., Sun N. et al. The tumor suppressor miR-124 inhibits cell proliferation and invasion by targeting B7-H3 in osteosarcoma // Tumour Biol. 2016. V. 37. № 11. P. 14939–14947.
  68. Lizee G., Overwijk W.W., Radvanyi L. et al. Harnessing the power of the immune system to target cancer // Annu. Rev. Med. 2013. V. 64. P. 71–90.
  69. Li X., Seebacher N.A., Hornicek F.J. et al. Application of liquid biopsy in bone and soft tissue sarcomas: present and future // Cancer Lett. 2018. V. 439. P. 66–77.
  70. Marin-Acevedo J.A., Dholaria B., Soyano A.E. et al. Next generation of immune checkpoint therapy in cancer: new developments and challenges // J. Hematol. Oncol. 2018. V. 11. № 1. P. 39.
  71. Buchbinder E., Hodi F.S. Cytotoxic T lymphocyte antigen-4 and immune checkpoint blockade // J. Clin. Invest. 2015. V. 125. № 9. P. 3377–3383.
  72. Yang J.C., Hughes M., Kammula U. et al. Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis // J. Immunother. 2007. V. 30. № 8. P. 825–830.
  73. Lynch T.J., Bondarenko I., Luft A. et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study // J. Clin. Oncol. 2012. V. 30. № 17. P. 2046–2054.
  74. Kwon E.D., Drake C.G., Scher H.I. et al. Investigators. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial // Lancet Oncol. 2014. V. 15. № 7. P. 700–712.
  75. Merchant M.S., Wright M., Baird K. et al. Phase I clinical trial of ipilimumab in pediatric patients with advanced solid tumors // Clin. Cancer Res. 2016. V. 22. № 6. P. 1364–1370.
  76. Postow M.A., Chesney J., Pavlick A.C. et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma // N. Engl. J. Med. 2015. V. 372. № 21. P. 2006–2017.
  77. Frigola X., Inman B.A., Krco C.J. et al. Soluble B7-H1: differences in production between dendritic cells and T cells // Immunol. Lett. 2012. V. 142. № 1-2. P. 78-82.
  78. Кушлинский Н.Е., Алфёров А.А., Тимофеев Ю.С. и др. Ключевые компоненты сигнального пути контрольной точки иммунитета PD-1/PD-L1 в сыворотке крови при опухолях костей // Бюллетень экспериментальной биологии и медицины. 2020. Т. 170. № 7. С. 79–83.
  79. Кушлинский Н.Е., Алфёров А.А., Булычева И.В. и др. Сравнительный анализ уровней растворимых форм рецептора и лиганда контрольной точки иммунитета PD-1/PD-L1 в сыворотке крови больных типичными остеосаркомой и хондросаркомой кости // Клиническая лабораторная диагностика. 2020. Т. 65. № 11. С. 669–675.
  80. Алфёров А.А., Ефимова М.М., Кузьмин Ю.Б. и др. Ключевые контрольные точки иммунитета и их ингибиторы в терапии опухолей костей. Часть 1. Сигнальная система белка программируемой клеточной гибели PD-1/PD-L // Технологии живых систем. 2021. Т. 18. № 1. С. 5–17.
  81. Алфёров А.А., Ефимова М.М., Кузьмин Ю.Б. и др. Ключевые контрольные точки иммунитета и их ингибиторы в терапии опухолей костей. Часть 2. Дополнительные мишени иммунотерапии опухолей костей и маркеры для оценки ее эффективности // Технологии живых систем. 2021. Т. 18. № 1. С. 18–31.
  82. Ding Y., Sun C., Li J. et al. The Prognostic Significance of Soluble Programmed Death Ligand 1 Expression in Cancers: A Systematic Review and Meta-analysis // Scand. J. Immunol. 2017. V. 86. № 5. P. 361-367.
  83. Zhu X., Lang J. Soluble PD-1 and PD-L1: predictive and prognostic significance in cancer // Oncotarget. 2017. V. 8. № 57.
    P. 97671–97682.
  84. Wei W., Xu B., Wang Y. et al. Prognostic significance of circulating soluble programmed death ligand-1 in patients with solid tumors: A meta-analysis // Medicine (Baltimore). 2018. V. 97. № 3. Р. e9617.
  85. Sakr M.A., Takino T., Domoto T. et al. GI24 enhances tumor invasiveness by regulating cell surface membrane-type 1 matrix metalloproteinase // Cancer Science. 2010. V. 101. № 11. P. 2368-2374.
  86. Flies D.B., Wang S., Xu H., Chen L. Cutting edge: A monoclonal antibody specific for the programmed death-1 homolog prevents graft-versus-host disease in mouse models // J. Immunol. 2011. V. 187. № 4. P. 1537-1541.
  87. Yoon K.W., Byun S., Kwon E. et al. Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53 // Science. 2015. V. 349. № 6247. P. 1261669.
  88. Aloia L., Parisi S., Fusco L. et al. Differentiation of embryonic stem cells 1 (Dies1) is a component of bone morphogenetic protein 4 (BMP4) signaling pathway required for proper differentiation of mouse embryonic stem cells // J. Biol. Chem. 2010. V. 285. P. 7776–7783.
  89. Wang L., Rubinstein R., Lines J.L. et al. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses // J. Exp. Med. 2011. V. 208. № 3. P. 577-592.
  90. Nowak E.C., Lines J.L., Varn F.S. et al. Immunoregulatory functions of VISTA // Immunol Rev. 2017. V. 276. № 1. P. 66-79.
  91. Johnston R.J., Pinckney L.J., Critton D. et al. VISTA is an acidic pH-selective ligand for PSGL-1 // Nature. 2019. V. 574. № 7779. P. 565-570.
  92. Huang X., Zhang X., Li E. et al. VISTA: an immune regulatory protein checking tumor and immune cells in cancer immunotherapy // J. Hematol. Oncol. 2020. V. 13. № 1. P. 83.
  93. Liu J., Yuan Y., Chen W. et al. Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses // Proc. Natl. Acad. Sci. U S A. 2015. V. 112. № 21. P. 6682-6687.
  94. Wang J., Wu G., Manick B. et al. VSIG-3 as a ligand of VISTA inhibits human T cell function // Immunology. 2019. V. 156. № 1. P. 74–85.
  95. Lines J.L., Sempere L.F., Broughton T. et al. VISTA is a novel broad-spectrum negative checkpoint regulator for cancer immunotherapy // Cancer Immunol. Res. 2014. V. 2. № 6. P. 510-517.
  96. Le Mercier I., Chen W., Lines J.L. et al. VISTA Regulates the Development of Protective Antitumor Immunity // Cancer Res. 2014. V. 74. № 7. P. 1933-1944.
  97. Wang L., Kang F.B., Zhang G.C. et al. Clinical significance of serum soluble B7-H3 in patients with osteosarcoma // Cancer Cell. Int. 2018. V. 18. P. 115.
  98. Liao H., Zhu H., Liu S., Wang H. Expression of V-domain immunoglobulin suppressor of T cell activation is associated with the advanced stage and presence of lymph node metastasis in ovarian cancer // Oncol. Lett. 2018. V. 16. № 3. P. 3465-3472.
  99. Bharaj P., Chahar H.S., Alozie O.K. et al. Characterization of programmed death-1 homologue-1 (PD-1H) expression and function in normal and HIV infected individuals // PLoS One. 2014. V. 3. № 10. P. e109103.
  100. Flies D.B., Han X., Higuchi T. et al. Coinhibitory receptor PD-1H preferentially suppresses CD4+ T cell-mediated immunity // J. Clin. Invest. 2014. V. 124. № 5. P. 1966-1975.
  101. Flies D.B., Higuchi T., Chen L. Mechanistic assessment of PD-1H coinhibitory receptor-induced T cell tolerance to allogeneic antigens // J. Immunol. 2015. V. 194. № 11. P. 5294-5304.
  102. Wang L., Le Mercier I., Putra J. et al. Disruption of the immune-checkpoint VISTA gene imparts a proinflammatory phenotype with predisposition to the development of autoimmunity // Proc. Natl. Acad. Sci. U S A. 2014. V. 111. № 41. P. 14846-14851.
  103. Yang W., Padkjær S.B., Wang J. et al. Construction of a versatile expression library for all human single-pass transmembrane proteins for receptor pairings by high throughput screening // J. Biotechnol. 2017. V. 260. P. 18-30.
  104. Kakavand H., Jackett L.A., Menzies A.M. et al. Negative immune checkpoint regulation by VISTA: a mechanism of acquired resistance to anti-PD-1 therapy in metastatic melanoma patients // Mod. Pathol. 2017. V. 30. № 12. P. 1666–1676.
  105. Kuklinski L.F., Yan S., Li Z. et al. VISTA expression on tumorinfltrating infammatory cells in primary cutaneous melanoma correlates with poor disease-specific survival // Cancer Immunol. Immunother. 2018. V. 67. № 7. P. 1113–1121.
  106. Wu L., Deng W., Huang C. et al. Expression of VISTA correlated with immunosuppression and synergized with CD8 to predict survival in human oral squamous cell carcinoma // Cancer Immunol. Immunother. 2017. V. 66. № 5. P. 627–636.
  107. Gao J., Ward J.F., Pettaway C.A. et al. VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer // Nat. Med. 2017. V. 23. № 5. P. 551–555.
  108. Xie S., Huang J., Qiao Q. et al. Expression of the inhibitory B7 family molecule VISTA in human colorectal carcinoma tumors // Cancer Immunol. Immunother. 2018. V. 67. № 11. P. 1685–1694.
  109. Liu J., Xie X., Xuan C. et al. High-Density Infiltration of V-domain Immunoglobulin Suppressor of T-cell Activation Up-regulated Immune Cells in Human Pancreatic Cancer // Pancreas. 2018. V. 47. № 6. P. 725–731.
  110. Mulati K., Hamanishi J., Matsumura N. et al. VISTA expressed in tumour cells regulates T cell function // Br. J. Cancer. 2019. V. 120. № 1. P. 115–127.
  111. Böger C., Behrens M., Krüger S., Röcken C. The novel negative checkpoint regulator VISTA is expressed in gastric carcinoma and associated with PD-L1/PD-1: A future perspective for a combined gastric cancer therapy? // Oncoimmunology. 2017. V. 6. № 4.
    P. e1293215.
  112. Villarroel-Espindola F., Yu X., Datar I. et al. Spatially Resolved and Quantitative Analysis of VISTA/PD-1H as a Novel Immunotherapy Target in Human Non-Small Cell Lung Cancer // Clin. Cancer Res. 2018. V. 24. № 7. P. 1562-1573.
  113. Zong L., Yu S., Mo S. et al. High VISTA Expression Correlates With a Favorable Prognosis in Patients With Colorectal Cancer // J. Immunother. 2021. V. 44. № 1. P. 22–28.
  114. ElTanbouly M.A., Schaafsma E., Smits N.C. et al. VISTA Re-programs Macrophage Biology Through the Combined Regulation of Tolerance and Anti-inflammatory Pathways // Front Immunol. 2020. V. 11. P. 580187.
  115. Кушлинский Н.Е., Ковалева О.В., Кузьмин Ю.Б. и др. Клиническая и прогностическая значимость растворимой формы контрольной точки иммунитета VISTA у больных первичными опухолями костей // Клиническая лабораторная диагностика. 2021. Т. 66. № 9. С. 533–538.
  116. Герштейн Е.С., Кузьмин Ю.Б., Алферов А.А. и др. Сравнительное исследование растворимых форм белков контрольных точек иммунитета VISTA, PD-1, PD-L1 и регулятора костного гомеостаза RANKL у больных опухолями костей // Молекулярная медицина. 2022. Т. 20. № 6. С. 25–32.
  117. Кузьмин Ю.Б., Короткова Е.А., Царапаев П.В. и др. Значимость растворимой формы контрольной точки иммунитета sVISTA у больных первичными опухолями костей в прогнозе заболевания / Материалы научно-практических конференций в рамках VIII Российского конгресса лабораторной медицины (РКЛМ 2022 г.) // М. 2022. С. 67.
  118. Zelin H., Yu P., Qinglin F. et al. Prognostic significance and therapeutic potential of the immune checkpoint VISTA in pancreatic cancer // Cancer Res. Clin. Oncol. 2021. V. 147. № 2. P. 517-531.
  119. Deng J., Le Mercier I., Kuta A., Noelle R.J. A New VISTA on combination therapy for negative checkpoint regulator blockade // J. Immunother. Cancer. 2016. V. 4. P. 86.
  120. Peng M., Mo Y., Wang Y. et al. Neoantigen vaccine: an emerging tumor immunotherapy // Mol. Cancer. 2019. V. 23. № 18. P. 128.
  121. Okudaira K., Hokari R., Tsuzuki Y. et al. Blockade of B7-H1 or B7-DC induces an anti-tumor effect in a mouse pancreatic cancer model // Int. J. Oncol. 2009. V. 35. № 4. P. 741-749.
  122. Ribas A., Wolchok J.D. Cancer immunotherapy using checkpoint blockade // Science. 2018. V. 23. № 359. P. 1350-1355.
  123. Pilones K.A., Hensler M., Daviaud C. et al. Converging focal radiation and immunotherapy in a preclinical model of triple negative breast cancer: contribution of VISTA blockade // Oncoimmunology. 2020. V. 9. № 1. P. 1830524.
  124. Kondo Y., Ohno T., Nishii N. et al. Differential contribution of three immune checkpoint (VISTA, CTLA-4, PD-1) pathways to antitumor responses against squamous cell carcinoma // Oral Oncology. 2016. V. 57. P. 54-60.
  125. Snyder L., Powers G., Sepulveda M.A., Alvarez J. ANTI - Vista Antibodies and Fragments // Janssen Pharmaceutica Patent. 2014. WO2016207717.
  126. Кушлинский Н.Е., Ковалева О.В., Алфёров А.А. и др. Экспрессия контрольной точки иммунитета B7-H3 в опухоли и ее растворимой формы в сыворотке крови больных новообразованиями костей // Альманах клинической медицины. 2021. Т. 49. № 3. С. 179–190.
  127. Yin S.J., Wang W.J., Zhang J.Y. Expression of B7-H3 in cancer tissue during osteosarcoma progression in nude mice // Genet. Mol. Res. 2015. V. 14. № 4. P. 14253–14261.
  128. He L., Li Z. B7-H3 and its role in bone cancers // Pathol. Res. Pract. 2019. V. 215. № 6. P. 152420.
  129. Yang S., Wei W., Zhao Q. B7-H3, a checkpoint molecule, as a target for cancer immunotherapy // Int. J. Biol. Sci. 2020. V. 16. № 11. P. 1767–1773.
  130. Dong H., Zhu G., Tamada K., Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion // Nat. Med. 1999. V. 5. № 12. P. 1365–1369.
  131. Wang S., Zhu G., Chapoval A.I. et al. Costimulation of T cells by B7-H2, a B7-like molecule that binds ICOS // Blood. 2000. V. 96. № 8. P. 2808–2813.
  132. Chapoval A.I., Ni J., Lau J.S. et al. B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production // Nat. Immunol. 2001. V. 2. № 3. P. 269–274.
  133. Sica G.L., Choi I.H., Zhu G. et al. B7-H4, a molecule of the B7 family, negatively regulates T cell immunity // Immunity. 2003. V. 18. № 6. P. 849–861.
  134. Tseng S.Y., Otsuji M., Gorski K. et al. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells // J. Exp. Med. 2001. V. 193. № 7. P. 839–846.
  135. Brandt C.S., Baratin M., Yi E.C. et al. The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans // J. Exp. Med. 2009. V. 206. № 7. P. 1495–1503.
  136. Loos M., Hedderich D.M., Ottenhausen M. et al. Expression of the costimulatory molecule B7-H3 is associated with prolonged survival in human pancreatic cancer // BMC cancer. 2009. V. 9. P. 463.
  137. Zhang G., Hou J., Shi J. et al. Soluble CD276 (B7-H3) is released from monocytes, dendritic cells and activated T cells and is detectable in normal human serum // Immunology. 2008. V. 123. № 4. P. 538-546.
  138. Picarda E., Ohaegbulam K.C., Zang X. Molecular Pathways: Targeting B7-H3 (CD276) for Human Cancer Immunotherapy // Clin. Cancer Res. 2016. V. 22. № 14. P. 3425–3431.
  139. Lupu C.M., Eisenbach C., Lupu A.D. et al. Adenoviral B7-H3 therapy induces tumor specific immune responses and reduces secondary metastasis in a murine model of colon cancer // Oncol. Rep. 2007. V. 18. № 3. P. 745–748.
  140. Suh W.K., Gajewska B.U., Okada H. et al. The B7 family member B7-H3 preferentially down-regulates T helper type 1-mediated immune responses // Nat. Immunol. 2003. V. 4. № 9. P. 899-906.
  141. Greenwald R.J., Freeman G.J., Sharpe A.H. The B7 family revisited // Annu Rev Immunol. 2005. V. 23. P. 515–548.
  142. Calabrò L., Sigalotti L., Fonsatti E. et al. Expression and regulation of B7-H3 immunoregulatory receptor, in human mesothelial and mesothelioma cells: immunotherapeutic implications // J. Cell. Physiol. 2011. V. 226. № 10. P. 2595–2600.
  143. Hofmeyer K.A., Ray A., Zang X. The contrasting role of B7-H3 // Proc. Natl. Acad. Sci. U S A. 2008. V. 105. № 30. P. 10277–10278.
  144. Xu H., Cheung I.Y., Guo H.F., Cheung N.K. MicroRNA miR-29 modulates expression of immunoinhibitory molecule B7-H3: potential implications for immune based therapy of human solid tumors // Cancer Res. 2009. V. 69. № 15. P. 6275– 6281.
  145. Gao B., Chen H., Shi Z. et al. MiR-29a inhibited costimulatory molecule B7-H3 expression and the invasion of glioma growth // Chin. J. Cancer Biother. 2015. V. 22. № 1. P. 28–33.
  146. Hashiguchi M., Kobori H., Ritprajak P. et al. Triggering receptor expressed on myeloid cell-like transcript 2 (TLT-2) is a counter-receptor for B7-H3 and enhances T cell responses // Proc. Natl. Acad. Sci. U S A. 2008. V. 105. № 30. P. 10495–10500. Erratum in: Proc. Natl. Acad. Sci. U S A. 2008. V. 105. № 38. P. 14744.
  147. Hashiguchi M. Human B7-H3 binds to Triggering receptor expressed on myeloid cells-like transcript 2 (TLT-2) and enhances T cell responses // Open J. Immunol. 2012. V. 2. № 1. P. 9–16.
  148. Leitner J., Klauser C., Pickl W.F. et al. B7-H3 is a potent inhibitor of human T-cell activation: No evidence for B7-H3 and TREML2 interaction // Eur. J. Immunol. 2009. V. 39. № 7. P. 1754–1764.
  149. Vigdorovich V., Ramagopal U.A., Lázár-Molnár E. et al. Structure and T cell inhibition properties of B7 family member, B7-H3 // Structure. 2013. V. 21. № 5. P. 707–717.
  150. Chen Y.W., Tekle C., Fodstad O. The immunoregulatory protein human B7H3 is a tumor-associated antigen that regulates tumor cell migration and invasion // Curr. Cancer Drug. Targets. 2008. V. 8. № 5. P. 404–413.
  151. Larsson S.E., Lorentzon R., Boquist L. Giant-cell tumor of bone. A demographic, clinical, and histopathological study of all cases recorded in the Swedish Cancer Registry for the years 1958 through 1968 // J. Bone Joint Surg. Am. 1975. V. 57. № 2. P. 167–173.
  152. Chen L., Zhang G., Sheng S. et al. Upregulation of soluble B7-H3 in NSCLC-derived malignant pleural effusion: A potential diagnostic biomarker correlated with NSCLC staging // Clin. Chim. Acta. 2016. V. 457. P. 81–85.
  153. Xie C., Liu D., Chen Q. et al. Soluble B7-H3 promotes the invasion and metastasis of pancreatic carcinoma cells through the TLR4/NF-κB pathway // Sci. Rep. 2016. V. 6. P. 27528.
  154. Gregorio A., Corrias M.V., Castriconi R. et al. Small round blue cell tumours: diagnostic and prognostic usefulness of the expression of B7-H3 surface molecule // Histopathology. 2008. V. 53. № 1. P. 73–80.
  155. Tekle C., Nygren M.K., Chen Y.-W. et al. B7-H3 contributes to the metastatic capacity of melanoma cells by modulation of known metastasisassociated genes // Int. J. Cancer. 2012. V. 130. № 10. P. 2282–2290.
  156. Nunes-Xavier C.E., Karlsen K.F., Tekle C. et al. Decreased expression of B7-H3 reduces the glycolytic capacity and sensitizes breast cancer cells to AKT/mTOR inhibitors // Oncotarget. 2016. V. 7. № 6. P. 6891–6901.
  157. Benzon B., Zhao S.G., Haffner M.C. et al. Correlation of B7-H3 with androgen receptor, immune pathways and poor outcome in prostate cancer: an expression-based analysis // Prostate Cancer Prostatic Dis. 2017. V. 20. № 1. P. 28–35.
  158. Ariel I.M., Verdu C. Chordoma: an analysis of twenty cases treated over a twenty-year span // J. Surg. Oncol. 1975. V. 7. № 1. P. 27–44.
  159. Ahmed M., Cheng M., Zhao Q. et al. Humanized Affinity-matured Monoclonal Antibody 8H9 Has Potent Antitumor Activity and Binds to FG Loop of Tumor Antigen B7-H3 // J. Biol. Chem. 2015. V. 290. № 50. P. 30018–30029.
  160. Kramer K., Kushner B.H., Modak S. et al. Compartmental intrathecal radioimmunotherapy: results for treatment for metastatic CNS neuroblastoma // J. Neurooncol. 2010. V. 97. № 3. P. 409–418.
  161. Souweidane M.M., Kramer K., Pandit-Taskar N. et al. Convection-enhanced delivery for diffuse intrinsic pontine glioma: a single-centre, dose-escalation, phase 1 trial // Lancet Oncol. 2018. V. 19. № 8. P. 1040–1050. Erratum in: Lancet Oncol. 2018. V. 19. № 8. P. e382.
  162. Liu H., Tekle C., Chen Y.W. et al. B7-H3 silencing increases paclitaxel sensitivity by abrogating Jak2/Stat3 phosphorylation // Mol. Cancer Ther. 2011. V. 10. № 6. P. 960–971.
  163. Lussier D.M., O'Neill L., Nieves L.M. et al. Enhanced T-cell immunity to osteosarcoma through antibody blockade of PD-1/PD-L1 interactions // J. Immunother. 2015. V. 38. № 3. P. 96-106.
  164. D'Angelo S.P., Mahoney M.R., Van Tine B.A. et al. Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): two open-label, non-comparative, randomised, phase 2 trials // Lancet Oncol. 2018. V. 19. № 3. P. 416 -426.
  165. Siva S., MacManus M.P., Martin R.F., Martin O.A. Abscopal effects of radiation therapy: a clinical review for the radiobiologist // Cancer Lett. 2015. V. 356. № 1. P. 82-90.
  166. Lee Y., Auh S.L., Wang Y. et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment // Blood. 2009. V. 114. № 3. P. 589-595.
  167. Twyman-Saint Victor C., Rech A.J., Maity A. et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer // Nature. 2015. V. 520. № 7547. P. 373-377.
  168. Kang J., Demaria S., Formenti S. Current clinical trials testing the combination of immunotherapy with radiotherapy // J. Immunother. Cancer. 2016. V. 4. P. 51.
Дата поступления: 23.05.2024
Одобрена после рецензирования: 10.06.2024
Принята к публикации: 22.06.2024