350 rub
Journal Technologies of Living Systems №3 for 2024 г.
Article in number:
Immune checkpoints and their soluble forms in bone tumors
Type of article: overview article
DOI: https://doi.org/10.18127/j20700997-202403-03
UDC: 616.71-006-074 : 612.017.1
Authors:

N.E. Kushlinskii1, A.A. Alferov2, Yu.B. Kuzmin3, P.L. Prishchep4, I.S. Chernomaz5, N.Yu. Sokolov6, I.N. Kuznetsov7, I.S. Stilidi8

1,2,4-6,8 N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia (Moscow, Russia)

3,7 Russian University of Medicine of the Ministry of Health of Russia (Moscow, Russia)

1 kne3108@gmail.com, 2 aleksandr.alferov@yahoo.com, 3 yriikuzmin@yandex.com, 4 Paulig92@mail.ru, 5 marvel2602@mail.ru, 6 strivp@mail.ru, 7 npkredo@yandex.ru, 8 ronc@list.ru

Abstract:

Primary bone tumors are rare and heterogeneous malignant neoplasms characterized by an aggressive clinical course, low sensitivity to drug therapy, and a poor prognosis. It is an undeniable fact that in patients with bone sarcomas, disturbances in molecular biological processes, including antitumor immunity, underlie cell proliferation, invasion and metastasis. It is believed that immunotherapy may be a potentially promising treatment for various malignant tumors, including bone sarcomas. At the same time, immune checkpoints (ICPs) play an important role in the regulation of antitumor immunity in cancer patients, and among them the PD-1/PD-L1 signaling system, which includes the programmed cell death protein 1 receptor (PD-1) and its ligands (PD-L1, PD-L2).

The purpose of the work is to analyze the significance of immune checkpoints and their soluble forms in cancer. This review presents literature data and our own research results on various CTIs for bone tumors. They are not unambiguous, and sometimes extremely contradictory, but most of them indicate their importance in assessing the clinical course and prognosis of the disease, which indicates the prospects of the modern direction of research on immunotherapy of primary bone tumors.

Currently, the first results have been obtained on the study of CTI in patients with bone tumors, which indicate the prospects for immunotherapy of these diseases.

Pages: 7-36
For citation

Kushlinskii N.E., Alferov A.A., Kuzmin Yu.B., Prishchep P.L., Chernomaz I.S., Sokolov N.Yu., Kuznetsov I.N., Stilidi I.S. Immune checkpoints and their soluble forms in bone tumors. Technologies of Living Systems. 2024. V. 21. № 3. Р. 7-36. DOI: https://doi.org/10.18127/j20700997-202403-03 (In Russian).

References
  1. Group ESESNW. Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2014. V. 25. Suppl. 3. P. 113–123.
  2. Casali P.G., Abecassis N., Aro H.T. et al. Soft tissue and visceral sarcomas: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018. V. 29. Suppl. 4. P. iv51–iv67.
  3. Unni K.K., Inwards C.Y. Dahlin’s bone tumors: general aspects and data on 10165 cases. Philadelphia: Lippincott Williams & Wilkins, 2006.
  4. Soft Tissue and Bone Tumours. WHO Classification of Tumours, 5th Edition. 2020. V. 3. 368 p.
  5. Chavin G., Sheinin Y., Crispen P.L. et al. Expression of immunosuppresive B7-H3 ligand by hormone-treated prostate cancer tumors and metastases. Clin. Cancer Res. 2009. V. 15. № 6. P. 2174–2180.
  6. Wang L., Zhang Q., Chen W. et al. B7-H3 is overexpressed in patients suffering osteosarcoma and associated with tumor aggressiveness and metastasis. PLoS One. 2013. V. 8. № 8. P. e70689.
  7. Maeda N., Yoshimura K., Yamamoto S. et al. Expression of B7-H3, a potential factor of tumor immune evasion in combination with the number of regulatory T cells, affects against recurrence-free survival in breast cancer patients. Ann. Surg. Oncol. 2014. V. 21. Suppl. 4. P. 546–555.
  8. Kang F.-B., Wang L., Jia H.-C. et al. B7-H3 promotes aggression and invasion of hepatocellular carcinoma by targeting epithelial-to-mesenchymal transition via JAK2/STAT3/Slug signaling pathway. Cancer Cell Int. 2015. V. 15. P. 45.
  9. Fernández L., Metais J.Y., Escudero A. et al. Memory T cells expressing an NKG2D-CAR efficiently target osteosarcoma cells.. Clin. Cancer Res. 2017. V. 23. № 19. P. 5824–5835.
  10. McEachron T.A., Triche T.J., Sorenson L. et al. Profiling targetable immune checkpoints in osteosarcoma. Oncoimmunology. 2018. V. 7. № 12. P. e1475873.
  11. Kyi C., Postow M.A. Checkpoint blocking antibodies in cancer immunotherapy. FEBS Lett. 2014. V. 588. № 2. P. 368–376.
  12. Tsukahara, T., Emori M., Murata K. et al. The future of immunotherapy for sarcoma. Expert. Opin. Biol. Ther. 2016. V. 16. № 8. P. 1049–1057.
  13. Kabir T.F., Chauhan A., Anthony L. et al. Immune Checkpoint Inhibitors in Pediatric Solid Tumors: Status in 2018. Ochsner J. Winter. 2018. V. 18. № 4. P. 370–376.
  14. Huang H.F., Zhu H., Yang X.T. et al. Progress in Research on Tumor Immune PD-1/PD-L1 Signaling Pathway in Malignant Bone Tumors. Zhonghua Zhong Liu Za Zhi. 2019. V. 41. № 6. P. 410–414.
  15. Shen J.K., Cote G.M., Choy E. et al. Programmed cell death ligand 1 expression in osteosarcoma. Cancer Immunol. Res. 2014. V. 2. № 7. P. 690–698.
  16. Chowdhury F., Dunn S., Mitchell S. et al. PD-L1 and CD8+PD1+ lymphocytes exist as targets in the pediatric tumor microenvironment for immunomodulatory therapy. OncoImmunology. 2015. V. 4. № 10. P. e1029701.
  17. Lussier D.M., O'Neill L., Nieves L.M. et al. Enhanced T-cell immunity to osteosarcoma through antibody blockade of PD-1/PD-L1 interactions. J. Immunother. 2015. V. 38. № 3. P. 96–106.
  18. Koirala P., Roth M.E., Gill J. et al. Immune infiltration and PD-L1 expression in the tumor microenvironment are prognostic in osteosarcoma. Sci. Rep. 2016. V. 6. P. 30093.
  19. Costa Arantes D.A., Goncalves A.S., Jham B.C. et al. Evaluation of HLA-G, HLA-E, and PD-L1 proteins in oral osteosarcomas. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2017. V. 123. № 6. P.188–196.
  20. Liao Y., Chen L., Feng Y. et al. Targeting programmed cell death ligand 1 by CRISPR/Cas9 in osteosarcoma cells. Oncotarget. 2017. V. 8. № 18. P. 30276-30287.
  21. Torabi A., Amaya C.N., Wians F.H. Jr. et al. PD-1 and PD-L1 expression in bone and soft tissue sarcomas. Pathology. 2017. V. 49. № 5. P. 506–513.
  22. Zhu Z., Jin Z., Zhang M. et al. Prognostic value of programmed death-ligand 1 in sarcoma: a meta-analysis. Oncotarget. 2017. V. 8. № 35. P. 59570–59580.
  23. Dhupkar P., Gordon N., Stewart J., Kleinerman E.S. Anti-PD-1 therapy redirects macrophages from an M2 to an M1 phenotype inducing regression of OS lung metastases. Cancer Med. 2018. V. 7. № 6. P. 2654–2664.
  24. Shimizu T., Fuchimoto Y., Fukuda K. et al. The effect of immune checkpoint inhibitors on lung metastases of osteosarcoma. J. Pediatr. Surg. 2017. V. 52. № 12. P. 2047–2050.
  25. Zheng B., Ren T., Huang Y. et al. PD-1 axis expression in musculoskeletal tumors and antitumor effect of nivolumab in osteosarcoma model of humanized mouse. J. Hematol. Oncol. 2018. V. 11. № 1. P. 16.
  26. Tawbi H.A., Burgess M., Bolejack V. et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol. 2017. V. 18. № 11. P. 1493–1501.
  27. Gurney G.J. SA, Bulterys M. Malignant bone tumours. Bethesda, MD: National Cancer Institute, SEER Program; 1999.
  28. McCaughan G.J., Fulham M.J., Mahar A. et al. Programmed cell death-1 blockade in recurrent disseminated Ewing sarcoma. J. Hematol. Oncol. 2016. V. 9. № 1. P. 48.
  29. Grünewald T.G.P., Cidre-Aranaz F., Surdez D. et al. Ewing sarcoma. Nat. Rev. Dis. Primers. 2018. V. 4. № 1. P. 5.
  30. Gaspar N., Hawkins D.S., Dirksen U. et al. Ewing sarcoma: current management and future approaches through collaboration. J. Clin. Oncol. 2015. V. 33. № 27. P. 3036–3046.
  31. Rodriguez-Galindo C., Billups C.A., Kun L.E. et al. Survival After Recurrence of Ewing Tumors: The St Jude Children's Research Hospital Experience, 1979-1999. Cancer. 2002. V. 94. № 2. P. 561–569.
  32. Bacci G., Ferrari S., Longhi A. et al. Therapy and Survival After Recurrence of Ewing's Tumors: The Rizzoli Experience in 195 Patients Treated With Adjuvant and Neoadjuvant Chemotherapy From 1979 to 1997. Ann. Oncol. 2003. V. 14. № 11. P. 1654–1659.
  33. Barker L.M., Pendergrass T.W., Sanders J.E., Hawkins D.S. Survival after recurrence of Ewing's sarcoma family of tumors. J. Clin. Oncol. 2005. V. 23. № 19. P. 4354–4362.
  34. Ohali A., Avigad S., Cohen I.J. et al. High frequency of genomic instability in Ewing family of tumors. Cancer Genet. Cytogenet. 2004. V. 150. № 1. P. 50–66.
  35. Ferreira B.I., Alonso J., Carrillo J. et al. Array CGH and gene-expression profiling reveals distinct genomic instability patterns associated with DNA repair and cell-cycle checkpoint pathways in Ewing's sarcoma. Oncogene. 2008. V. 27. № 14. P. 2084–2090.
  36. Machado I., Lopez-Guerrero J.A., Scotlandi K. et al. Immunohistochemical analysis and prognostic significance of PD-L1, PD-1, and CD8+ tumor-infiltrating lymphocytes in Ewing's sarcoma family of tumors (ESFT). Virchows Arch. 2018. V. 472. № 5. P. 815–824.
  37. Kim C., Kim E.K., Jung H. et al. Prognostic implications of PD-L1 expression in patients with soft tissue sarcoma. BMC Cancer. 2016. V. 16. P. 434.
  38. Angelini A., Guerra G., Mavrogenis A.F. et al. Clinical outcome of central conventional chondrosarcoma. J. Surg. Oncol. 2012. V. 106. № 8. P. 929–937.
  39. Hogendoorn P.C. Chondrosarcoma (grade I-III), including primary and secondary variants and periosteal chondrosarcoma, dedifferentiated chondrosarcoma, mesenchymal chondrosarcoma and clear cell chondrosarcoma. In: Fletcher C.D.M., Bridge J.A., Hogendoorn P.C. et al. (eds). WHO Classification of Tumours of Soft Tissue and Bone. 4th edn. IARC Press: Lyon, France, 2013. P. 264–274.
  40. Bovée J.V., Hogendoorn P.C., Wunder J.S., Alman B.A. Cartilage tumours and bone development: molecular pathology and possible therapeutic targets. Nat. Rev. Cancer. 2010. V. 10. № 7. P. 481–488.
  41. Amary M.F., Bacsi K., Maggiani F. et al. IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J. Pathol. 2011. V. 224. № 3. P. 334–343.
  42. Gitelis S., Bertoni F., Picci P., Campanacci M. Chondrosarcoma of bone. The experience at the Istituto Ortopedico Rizzoli. J. Bone Jt. Surg. Am. 1981. V. 63. № 8. P. 1248–1257.
  43. Ahmed A.R., Tan T.S., Unni K.K. et al. Secondary chondrosarcoma in osteochondroma: report of 107 patients. Clin. Orthop. Relat. Res. 2003. V. 411. P. 193–206.
  44. Guide Line SIOT Study Group. La diagnosi e il trattamento del condrosarcoma. GIOT. 2011. V. 37. P. 18–26.
  45. Gelderblom H., Hogendoorn P.C., Dijkstra S.D. et al. The clinical approach towards chondrosarcoma. Oncologist. 2008. V. 13. № 3. P. 320–329.
  46. Riedel R.F., Larrier N., Dodd L. et al. The clinical management of chondrosarcoma. Curr. Treat. Options. Oncol. 2009. V. 10. № 1–2. P. 94–106.
  47. Kostine M., Cleven A.H., de Miranda N.F. et al. Analysis of PD-L1, T-cell infiltrate and HLA expression in chondrosarcoma indicates potential for response to immunotherapy specifically in the dedifferentiated subtype. Mod. Pathol. 2016. V. 29. № 9. P. 1028–1037.
  48. Yang X., Zhu G., Yang Z. et al. Expression of PD-L1/PD-L2 is associated with high proliferation index of Ki-67 but not with TP53 overexpression in chondrosarcoma. Int. J. Biol. Markers. 2018. V. 33. № 4. P. 507–513.
  49. Paoluzzi L., Cacavio A., Ghesani M. et al. Response to anti-PD1 therapy with nivolumab in metastatic sarcomas. Clin. Sarcoma Res. 2016. V. 6. P. 24.
  50. Walcott B.P., Nahed B.V., Mohyeldin A. et al. Chordoma: current concepts, management, and future directions. Lancet Oncol. 2012. V. 13. № 2. P. 69–76.
  51. SEER Cancer Stat Facts: Bone and Joint Cancer. National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/statfacts/html/bones.html
  52. Feng Y., Shen J., Gao Y. et al. Expression of programmed cell death ligand 1 (PD-L1) and prevalence of tumor-infiltrating lymphocytes (TILs) in chordoma. Oncotarget. 2015. V. 6. № 13. P. 11139–11149.
  53. Mathios D., Ruzevick J., Jackson C.M. et al. PD-1, PD-L1, PD-L2 expression in the chordoma microenvironment. J. Neurooncol. 2015. V. 121. № 2. P. 251–259.
  54. Zou M.X., Peng A.B., Lv G.H. et al. Expression of programmed death-1 ligand (PD-L1) in tumor-infiltrating lymphocytes is associated with favorable spinal chordoma prognosis. Am. J. Transl. Res. 2016. V. 8. № 7. P. 3274–3287.
  55. Resnick C.M., Margolis J., Susarla S.M. et al. Maxillofacial and axial/appendicular giant cell lesions: unique tumors or variants of the same disease? A comparison of phenotypic, clinical, and radiographic characteristics. J. Oral. Maxillofac. Surg. 2010. V. 68. № 1. P. 130–137.
  56. Balke M., Schremper L., Gebert C. et al. Giant cell tumor of bone: treatment and outcome of 214 cases. J. Cancer Res. Clin. Oncol. 2008. V. 134. № 9. P. 969–978.
  57. Beebe-Dimmer J.L., Cetin K., Fryzek J.P. et al. The epidemiology of malignant giant cell tumors of bone: an analysis of data from the Surveillance, Epidemiology and End Results Program (1975-2004). Rare Tumors. 2009. V. 1. № 2. P. e52.
  58. Al-Sukaini A., Hornicek F.J., Peacock Z.S. et al. Immune Surveillance Plays a Role in Locally Aggressive Giant Cell Lesions of Bone. Clin. Orthop. Relat. Res. 2017. V. 475. № 12. P. 3071–3081.
  59. Schreuder W.H., Peacock Z.S., Ebb D. et al. Adjuvant antiangiogenic treatment for aggressive giant cell lesions of the jaw: a 20-year experience at Massachusetts General Hospital. J. Oral Maxillofac. Surg. 2017. V. 75. № 1. P. 105–118
  60. Enneking W.F. A system of staging musculoskeletal neoplasms. Clin. Orthop. Relat. Res. 1986. V. 204. P. 9–24.
  61. Peacock Z.S., Resnick C.M., Susarla S.M. et al. Do histologic criteria predict biologic behavior of giant cell lesions?. J. Oral. Maxillofac. Surg. 2012. V. 70. № 11. P. 2573–2580.
  62. Branstetter D.G., Nelson S.D., Manivel J.C. et al. Denosumab induces tumor reduction and bone formation in patients with giant-cell tumor of bone. Clin. Cancer Res. 2012. V. 18. № 16. P. 4415–4424.
  63. Gaston C.L., Grimer R.J., Parry M. et al. Current status and unanswered questions on the use of Denosumab in giant cell tumor of bone. Clin. Sarcoma Res. 2016. V. 6. № 1. P. 15.
  64. Ghert M., Simunovic N., Cowan R.W. et al. Properties of the stromal cell in giant cell tumor of bone. Clin. Orthop. Relat. Res. 2007. V. 459. P. 8–13.
  65. Fellenberg J., Saehr H., Lehner B., Depeweg D. A microRNA signature differentiates between giant cell tumor derived neoplastic stromal cells and mesenchymal stem cells. Cancer Lett. 2012. V. 321. № 2. P. 162–168.
  66. Sathyanarayanan V., Neelapu S.S. Cancer immunotherapy: strategies for personalization and combinatorial approaches. Mol. Oncol. 2015. V. 9. № 10. P. 2043–2053.
  67. Wang L., Kang F.B., Sun N. et al. The tumor suppressor miR-124 inhibits cell proliferation and invasion by targeting B7-H3 in osteosarcoma. Tumour Biol. 2016. V. 37. № 11. P. 14939–14947.
  68. Lizee G., Overwijk W.W., Radvanyi L. et al. Harnessing the power of the immune system to target cancer. Annu. Rev. Med. 2013. V. 64. P. 71–90.
  69. Li X., Seebacher N.A., Hornicek F.J. et al. Application of liquid biopsy in bone and soft tissue sarcomas: present and future. Cancer Lett. 2018. V. 439. P. 66–77.
  70. Marin-Acevedo J.A., Dholaria B., Soyano A.E. et al. Next generation of immune checkpoint therapy in cancer: new developments and challenges. J. Hematol. Oncol. 2018. V. 11. № 1. P. 39.
  71. Buchbinder E., Hodi F.S. Cytotoxic T lymphocyte antigen-4 and immune checkpoint blockade. J. Clin. Invest. 2015. V. 125. № 9. P. 3377–3383.
  72. Yang J.C., Hughes M., Kammula U. et al. Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J. Immunother. 2007. V. 30. № 8. P. 825–830.
  73. Lynch T.J., Bondarenko I., Luft A. et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J. Clin. Oncol. 2012. V. 30. № 17. P. 2046–2054.
  74. Kwon E.D., Drake C.G., Scher H.I. et al. Investigators. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014. V. 15. № 7. P. 700–712.
  75. Merchant M.S., Wright M., Baird K. et al. Phase I clinical trial of ipilimumab in pediatric patients with advanced solid tumors. Clin. Cancer Res. 2016. V. 22. № 6. P. 1364–1370.
  76. Postow M.A., Chesney J., Pavlick A.C. et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N. Engl. J. Med. 2015. V. 372. № 21. P. 2006–2017.
  77. Frigola X., Inman B.A., Krco C.J. et al. Soluble B7-H1: differences in production between dendritic cells and T cells. Immunol. Lett. 2012. V. 142. № 1-2. P. 78-82.
  78. Kushlinskiy N.E., Alferov A.A., Timofeyev Yu.S. i dr. Klyuchevyye komponenty signalnogo puti kontrolnoy tochki immuniteta PD-1/PD-L1 v syvorotke krovi pri opukholyakh kostey. Byulleten eksperimentalnoy biologii i meditsiny. 2020. T. 170. № 7. S. 79–83. (in Russian).
  79. Kushlinskiy N.E., Alferov A.A., Bulycheva I.V. i dr. Sravnitelnyy analiz urovney rastvorimykh form retseptora i liganda kontrolnoy tochki immuniteta PD-1/PD-L1 v syvorotke krovi bolnykh tipichnymi osteosarkomoy i khondrosarkomoy kosti. Klinicheskaya laboratornaya diagnostika. 2020. T. 65. № 11. S. 669–675. (in Russian).
  80. Alferov A.A., Efimova M.M., Kuzmin Yu.B. i dr. Klyuchevyye kontrolnyye tochki immuniteta i ikh ingibitory v terapii opukholey kostey. Chast 1. Signalnaya sistema belka programmiruyemoy kletochnoy gibeli PD-1/PD-L. Tekhnologii zhivykh sistem. 2021. T. 18. № 1. S. 5–17. (in Russian).
  81. Alferov A.A., Efimova M.M., Kuzmin Yu.B. i dr. Klyuchevyye kontrolnyye tochki immuniteta i ikh ingibitory v terapii opukholey kostey. Chast 2. Dopolnitelnyye misheni immunoterapii opukholey kostey i markery dlya otsenki eye effektivnosti. Tekhnologii zhivykh sistem. 2021. T. 18. № 1. S. 18–31. (in Russian).
  82. Ding Y., Sun C., Li J. et al. The Prognostic Significance of Soluble Programmed Death Ligand 1 Expression in Cancers: A Systematic Review and Meta-analysis. Scand. J. Immunol. 2017. V. 86. № 5. P. 361-367.
  83. Zhu X., Lang J. Soluble PD-1 and PD-L1: predictive and prognostic significance in cancer. Oncotarget. 2017. V. 8. № 57. P. 97671-97682.
  84. Wei W., Xu B., Wang Y. et al. Prognostic significance of circulating soluble programmed death ligand-1 in patients with solid tumors: A meta-analysis. Medicine (Baltimore). 2018. V. 97. № 3. Р. e9617.
  85. Sakr M.A., Takino T., Domoto T. et al. GI24 enhances tumor invasiveness by regulating cell surface membrane-type 1 matrix metalloproteinase. Cancer Science. 2010. V. 101. № 11. P. 2368-2374.
  86. Flies D.B., Wang S., Xu H., Chen L. Cutting edge: A monoclonal antibody specific for the programmed death-1 homolog prevents graft-versus-host disease in mouse models. J. Immunol. 2011. V. 187. № 4. P. 1537-1541.
  87. Yoon K.W., Byun S., Kwon E. et al. Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53. Science. 2015. V. 349. № 6247. P. 1261669.
  88. Aloia L., Parisi S., Fusco L. et al. Differentiation of embryonic stem cells 1 (Dies1) is a component of bone morphogenetic protein 4 (BMP4) signaling pathway required for proper differentiation of mouse embryonic stem cells. J. Biol. Chem. 2010. V. 285. P. 7776-7783.
  89. Wang L., Rubinstein R., Lines J.L. et al. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J. Exp. Med. 2011. V. 208. № 3. P. 577-592.
  90. Nowak E.C., Lines J.L., Varn F.S. et al. Immunoregulatory functions of VISTA. Immunol Rev. 2017. V. 276. № 1. P. 66-79.
  91. Johnston R.J., Pinckney L.J., Critton D. et al. VISTA is an acidic pH-selective ligand for PSGL-1. Nature. 2019. V. 574. № 7779. P. 565-570.
  92. Huang X., Zhang X., Li E. et al. VISTA: an immune regulatory protein checking tumor and immune cells in cancer immunotherapy. J. Hematol. Oncol. 2020. V. 13. № 1. P. 83.
  93. Liu J., Yuan Y., Chen W. et al. Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses. Proc. Natl. Acad. Sci. U S A. 2015. V. 112. № 21. P. 6682-6687.
  94. Wang J., Wu G., Manick B. et al. VSIG-3 as a ligand of VISTA inhibits human T cell function. Immunology. 2019. V. 156. № 1. P. 74-85.
  95. Lines J.L., Sempere L.F., Broughton T. et al. VISTA is a novel broad-spectrum negative checkpoint regulator for cancer immunotherapy. Cancer Immunol. Res. 2014. V. 2. № 6. P. 510-517.
  96. Le Mercier I., Chen W., Lines J.L. et al. VISTA Regulates the Development of Protective Antitumor Immunity. Cancer Res. 2014. V. 74. № 7. P. 1933-1944.
  97. Wang L., Kang F.B., Zhang G.C. et al. Clinical significance of serum soluble B7-H3 in patients with osteosarcoma. Cancer Cell. Int. 2018. V. 18. P. 115.
  98. Liao H., Zhu H., Liu S., Wang H. Expression of V-domain immunoglobulin suppressor of T cell activation is associated with the advanced stage and presence of lymph node metastasis in ovarian cancer. Oncol. Lett. 2018. V. 16. № 3. P. 3465-3472.
  99. Bharaj P., Chahar H.S., Alozie O.K. et al. Characterization of programmed death-1 homologue-1 (PD-1H) expression and function in normal and HIV infected individuals. PLoS One. 2014. V. 3. № 10. P. e109103.
  100. Flies D.B., Han X., Higuchi T. et al. Coinhibitory receptor PD-1H preferentially suppresses CD4+ T cell-mediated immunity. J. Clin. Invest. 2014. V. 124. № 5. P. 1966-1975.
  101. Flies D.B., Higuchi T., Chen L. Mechanistic assessment of PD-1H coinhibitory receptor-induced T cell tolerance to allogeneic antigens. J. Immunol. 2015. V. 194. № 11. P. 5294-5304.
  102. Wang L., Le Mercier I., Putra J. et al. Disruption of the immune-checkpoint VISTA gene imparts a proinflammatory phenotype with predisposition to the development of autoimmunity. Proc. Natl. Acad. Sci. U S A. 2014. V. 111. № 41. P. 14846-14851.
  103. Yang W., Padkjær S.B., Wang J. et al. Construction of a versatile expression library for all human single-pass transmembrane proteins for receptor pairings by high throughput screening. J. Biotechnol. 2017. V. 260. P. 18-30.
  104. Kakavand H., Jackett L.A., Menzies A.M. et al. Negative immune checkpoint regulation by VISTA: a mechanism of acquired resistance to anti-PD-1 therapy in metastatic melanoma patients. Mod. Pathol. 2017. V. 30. № 12. P. 1666–1676.
  105. Kuklinski L.F., Yan S., Li Z. et al. VISTA expression on tumorinfltrating infammatory cells in primary cutaneous melanoma correlates with poor disease-specific survival. Cancer Immunol. Immunother. 2018. V. 67. № 7. P. 1113–1121.
  106. Wu L., Deng W., Huang C. et al. Expression of VISTA correlated with immunosuppression and synergized with CD8 to predict survival in human oral squamous cell carcinoma. Cancer Immunol. Immunother. 2017. V. 66. № 5. P. 627–636.
  107. Gao J., Ward J.F., Pettaway C.A. et al. VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat. Med. 2017. V. 23. № 5. P. 551–555.
  108. Xie S., Huang J., Qiao Q. et al. Expression of the inhibitory B7 family molecule VISTA in human colorectal carcinoma tumors. Cancer Immunol. Immunother. 2018. V. 67. № 11. P. 1685–1694.
  109. Liu J., Xie X., Xuan C. et al. High-Density Infiltration of V-domain Immunoglobulin Suppressor of T-cell Activation Up-regulated Immune Cells in Human Pancreatic Cancer. Pancreas. 2018. V. 47. № 6. P. 725–731.
  110. Mulati K., Hamanishi J., Matsumura N. et al. VISTA expressed in tumour cells regulates T cell function. Br. J. Cancer. 2019. V. 120. № 1. P. 115–127.
  111. Böger C., Behrens M., Krüger S., Röcken C. The novel negative checkpoint regulator VISTA is expressed in gastric carcinoma and associated with PD-L1/PD-1: A future perspective for a combined gastric cancer therapy?. Oncoimmunology. 2017. V. 6. № 4. P. e1293215.
  112. Villarroel-Espindola F., Yu X., Datar I. et al. Spatially Resolved and Quantitative Analysis of VISTA/PD-1H as a Novel Immunotherapy Target in Human Non-Small Cell Lung Cancer. Clin. Cancer Res. 2018. V. 24. № 7. P. 1562-1573.
  113. Zong L., Yu S., Mo S. et al. High VISTA Expression Correlates With a Favorable Prognosis in Patients With Colorectal Cancer. J. Immunother. 2021. V. 44. № 1. P. 22–28.
  114. ElTanbouly M.A., Schaafsma E., Smits N.C. et al. VISTA Re-programs Macrophage Biology Through the Combined Regulation of Tolerance and Anti-inflammatory Pathways. Front Immunol. 2020. V. 11. P. 580187.
  115. Kushlinskiy N.E., Kovaleva O.V., Kuzmin Yu.B. i dr. Klinicheskaya i prognosticheskaya znachimost rastvorimoy formy kontrolnoy tochki immuniteta VISTA u bolnykh pervichnymi opukholyami kostey. Klinicheskaya laboratornaya diagnostika. 2021. T. 66. № 9. S. 533–538. (in Russian).
  116. Gershteyn E.S., Kuzmin Yu.B., Alferov A.A. i dr. Sravnitelnoye issledovaniye rastvorimykh form belkov kontrolnykh tochek immuniteta VISTA. PD-1. PD-L1 i regulyatora kostnogo gomeostaza RANKL u bolnykh opukholyami kostey. Molekulyarnaya meditsina. 2022. T. 20. № 6. S. 25–32. (in Russian).
  117. Kuzmin Yu.B., Korotkova E.A., Tsarapayev P.V. i dr. Znachimost rastvorimoy formy kontrolnoy tochki immuniteta sVISTA u bolnykh pervichnymi opukholyami kostey v prognoze zabolevaniya. Materialy nauchno-prakticheskikh konferentsiy v ramkakh VIII Rossiyskogo kongressa laboratornoy meditsiny (RKLM 2022 g.). M. 2022. S. 67. (in Russian).
  118. Zelin H., Yu P., Qinglin F. et al. Prognostic significance and therapeutic potential of the immune checkpoint VISTA in pancreatic cancer. Cancer Res. Clin. Oncol. 2021. V. 147. № 2. P. 517-531.
  119. Deng J., Le Mercier I., Kuta A., Noelle R.J. A New VISTA on combination therapy for negative checkpoint regulator blockade. J. Immunother. Cancer. 2016. V. 4. P. 86.
  120. Peng M., Mo Y., Wang Y. et al. Neoantigen vaccine: an emerging tumor immunotherapy. Mol. Cancer. 2019. V. 23. № 18. P. 128.
  121. Okudaira K., Hokari R., Tsuzuki Y. et al. Blockade of B7-H1 or B7-DC induces an anti-tumor effect in a mouse pancreatic cancer model. Int. J. Oncol. 2009. V. 35. № 4. P. 741-749.
  122. Ribas A., Wolchok J.D. Cancer immunotherapy using checkpoint blockade. Science. 2018. V. 23. № 359. P. 1350-1355.
  123. Pilones K.A., Hensler M., Daviaud C. et al. Converging focal radiation and immunotherapy in a preclinical model of triple negative breast cancer: contribution of VISTA blockade. Oncoimmunology. 2020. V. 9. № 1. P. 1830524.
  124. Kondo Y., Ohno T., Nishii N. et al. Differential contribution of three immune checkpoint (VISTA, CTLA-4, PD-1) pathways to antitumor responses against squamous cell carcinoma. Oral Oncology. 2016. V. 57. P. 54-60.
  125. Snyder L., Powers G., Sepulveda M.A., Alvarez J. ANTI - Vista Antibodies and Fragments. Janssen Pharmaceutica Patent. 2014. WO2016207717.
  126. Kushlinskiy N.E., Kovaleva O.V., Alferov A.A. i dr. Ekspressiya kontrolnoy tochki immuniteta B7-H3 v opukholi i eye rastvorimoy formy v syvorotke krovi bolnykh novoobrazovaniyami kostey. Almanakh klinicheskoy meditsiny. 2021. T. 49. № 3. S. 179–190. (in Russian).
  127. Yin S.J., Wang W.J., Zhang J.Y. Expression of B7-H3 in cancer tissue during osteosarcoma progression in nude mice. Genet. Mol. Res. 2015. V. 14. № 4. P. 14253–14261.
  128. He L., Li Z. B7-H3 and its role in bone cancers. Pathol. Res. Pract. 2019. V. 215. № 6. P. 152420.
  129. Yang S., Wei W., Zhao Q. B7-H3, a checkpoint molecule, as a target for cancer immunotherapy. Int. J. Biol. Sci. 2020. V. 16. № 11. P. 1767–1773.
  130. Dong H., Zhu G., Tamada K., Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med. 1999. V. 5. № 12. P. 1365–1369.
  131. Wang S., Zhu G., Chapoval A.I. et al. Costimulation of T cells by B7-H2, a B7-like molecule that binds ICOS. Blood. 2000. V. 96. № 8. P. 2808–2813.
  132. Chapoval A.I., Ni J., Lau J.S. et al. B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production. Nat. Immunol. 2001. V. 2. № 3. P. 269–274.
  133. Sica G.L., Choi I.H., Zhu G. et al. B7-H4, a molecule of the B7 family, negatively regulates T cell immunity. Immunity. 2003. V. 18. № 6. P. 849–861.
  134. Tseng S.Y., Otsuji M., Gorski K. et al. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J. Exp. Med. 2001. V. 193. № 7. P. 839–846.
  135. Brandt C.S., Baratin M., Yi E.C. et al. The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J. Exp. Med. 2009. V. 206. № 7. P. 1495–1503.
  136. Loos M., Hedderich D.M., Ottenhausen M. et al. Expression of the costimulatory molecule B7-H3 is associated with prolonged survival in human pancreatic cancer. BMC cancer. 2009. V. 9. P. 463.
  137. Zhang G., Hou J., Shi J. et al. Soluble CD276 (B7-H3) is released from monocytes, dendritic cells and activated T cells and is detectable in normal human serum. Immunology. 2008. V. 123. № 4. P. 538-546.
  138. Picarda E., Ohaegbulam K.C., Zang X. Molecular Pathways: Targeting B7-H3 (CD276) for Human Cancer Immunotherapy. Clin. Cancer Res. 2016. V. 22. № 14. P. 3425–3431.
  139. Lupu C.M., Eisenbach C., Lupu A.D. et al. Adenoviral B7-H3 therapy induces tumor specific immune responses and reduces secondary metastasis in a murine model of colon cancer. Oncol. Rep. 2007. V. 18. № 3. P. 745–748.
  140. Suh W.K., Gajewska B.U., Okada H. et al. The B7 family member B7-H3 preferentially down-regulates T helper type 1-mediated immune responses. Nat. Immunol. 2003. V. 4. № 9. P. 899-906.
  141. Greenwald R.J., Freeman G.J., Sharpe A.H. The B7 family revisited. Annu Rev Immunol. 2005. V. 23. P. 515–548.
  142. Calabrò L., Sigalotti L., Fonsatti E. et al. Expression and regulation of B7-H3 immunoregulatory receptor, in human mesothelial and mesothelioma cells: immunotherapeutic implications. J. Cell. Physiol. 2011. V. 226. № 10. P. 2595–2600.
  143. Hofmeyer K.A., Ray A., Zang X. The contrasting role of B7-H3. Proc. Natl. Acad. Sci. U S A. 2008. V. 105. № 30. P. 10277–10278.
  144. Xu H., Cheung I.Y., Guo H.F., Cheung N.K. MicroRNA miR-29 modulates expression of immunoinhibitory molecule B7-H3: potential implications for immune based therapy of human solid tumors. Cancer Res. 2009. V. 69. № 15. P. 6275– 6281.
  145. Gao B., Chen H., Shi Z. et al. MiR-29a inhibited costimulatory molecule B7-H3 expression and the invasion of glioma growth. Chin. J. Cancer Biother. 2015. V. 22. № 1. P. 28–33.
  146. Hashiguchi M., Kobori H., Ritprajak P. et al. Triggering receptor expressed on myeloid cell-like transcript 2 (TLT-2) is a counter-receptor for B7-H3 and enhances T cell responses. Proc. Natl. Acad. Sci. U S A. 2008. V. 105. № 30. P. 10495–10500. Erratum in: Proc. Natl. Acad. Sci. U S A. 2008. V. 105. № 38. P. 14744.
  147. Hashiguchi M. Human B7-H3 binds to Triggering receptor expressed on myeloid cells-like transcript 2 (TLT-2) and enhances T cell responses. Open J. Immunol. 2012. V. 2. № 1. P. 9–16.
  148. Leitner J., Klauser C., Pickl W.F. et al. B7-H3 is a potent inhibitor of human T-cell activation: No evidence for B7-H3 and TREML2 interaction. Eur. J. Immunol. 2009. V. 39. № 7. P. 1754–1764.
  149. Vigdorovich V., Ramagopal U.A., Lázár-Molnár E. et al. Structure and T cell inhibition properties of B7 family member, B7-H3. Structure. 2013. V. 21. № 5. P. 707–717.
  150. Chen Y.W., Tekle C., Fodstad O. The immunoregulatory protein human B7H3 is a tumor-associated antigen that regulates tumor cell migration and invasion. Curr. Cancer Drug. Targets. 2008. V. 8. № 5. P. 404–413.
  151. Larsson S.E., Lorentzon R., Boquist L. Giant-cell tumor of bone. A demographic, clinical, and histopathological study of all cases recorded in the Swedish Cancer Registry for the years 1958 through 1968. J. Bone Joint Surg. Am. 1975. V. 57. № 2. P. 167–173.
  152. Chen L., Zhang G., Sheng S. et al. Upregulation of soluble B7-H3 in NSCLC-derived malignant pleural effusion: A potential diagnostic biomarker correlated with NSCLC staging. Clin. Chim. Acta. 2016. V. 457. P. 81–85.
  153. Xie C., Liu D., Chen Q. et al. Soluble B7-H3 promotes the invasion and metastasis of pancreatic carcinoma cells through the TLR4/NF-κB pathway. Sci. Rep. 2016. V. 6. P. 27528.
  154. Gregorio A., Corrias M.V., Castriconi R. et al. Small round blue cell tumours: diagnostic and prognostic usefulness of the expression of B7-H3 surface molecule. Histopathology. 2008. V. 53. № 1. P. 73–80.
  155. Tekle C., Nygren M.K., Chen Y.-W. et al. B7-H3 contributes to the metastatic capacity of melanoma cells by modulation of known metastasisassociated genes. Int. J. Cancer. 2012. V. 130. № 10. P. 2282–2290.
  156. Nunes-Xavier C.E., Karlsen K.F., Tekle C. et al. Decreased expression of B7-H3 reduces the glycolytic capacity and sensitizes breast cancer cells to AKT/mTOR inhibitors. Oncotarget. 2016. V. 7. № 6. P. 6891–6901.
  157. Benzon B., Zhao S.G., Haffner M.C. et al. Correlation of B7-H3 with androgen receptor, immune pathways and poor outcome in prostate cancer: an expression-based analysis. Prostate Cancer Prostatic Dis. 2017. V. 20. № 1. P. 28–35.
  158. Ariel I.M., Verdu C. Chordoma: an analysis of twenty cases treated over a twenty-year span. J. Surg. Oncol. 1975. V. 7. № 1. P. 27–44.
  159. Ahmed M., Cheng M., Zhao Q. et al. Humanized Affinity-matured Monoclonal Antibody 8H9 Has Potent Antitumor Activity and Binds to FG Loop of Tumor Antigen B7-H3. J. Biol. Chem. 2015. V. 290. № 50. P. 30018–30029.
  160. Kramer K., Kushner B.H., Modak S. et al. Compartmental intrathecal radioimmunotherapy: results for treatment for metastatic CNS neuroblastoma. J. Neurooncol. 2010. V. 97. № 3. P. 409–418.
  161. Souweidane M.M., Kramer K., Pandit-Taskar N. et al. Convection-enhanced delivery for diffuse intrinsic pontine glioma: a single-centre, dose-escalation, phase 1 trial. Lancet Oncol. 2018. V. 19. № 8. P. 1040–1050. Erratum in: Lancet Oncol. 2018. V. 19. № 8. P. e382.
  162. Liu H., Tekle C., Chen Y.W. et al. B7-H3 silencing increases paclitaxel sensitivity by abrogating Jak2/Stat3 phosphorylation. Mol. Cancer Ther. 2011. V. 10. № 6. P. 960–971.
  163. Lussier D.M., O'Neill L., Nieves L.M. et al. Enhanced T-cell immunity to osteosarcoma through antibody blockade of PD-1/PD-L1 interactions. J. Immunother. 2015. V. 38. № 3. P. 96-106.
  164. D'Angelo S.P., Mahoney M.R., Van Tine B.A. et al. Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): two open-label, non-comparative, randomised, phase 2 trials. Lancet Oncol. 2018. V. 19. № 3. P. 416 -426.
  165. Siva S., MacManus M.P., Martin R.F., Martin O.A. Abscopal effects of radiation therapy: a clinical review for the radiobiologist. Cancer Lett. 2015. V. 356. № 1. P. 82-90.
  166. Lee Y., Auh S.L., Wang Y. et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood. 2009. V. 114. № 3. P. 589-595.
  167. Twyman-Saint Victor C., Rech A.J., Maity A. et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 2015. V. 520. № 7547. P. 373-377.
  168. Kang J., Demaria S., Formenti S. Current clinical trials testing the combination of immunotherapy with radiotherapy. J. Immunother. Cancer. 2016. V. 4. P. 51.
Date of receipt: 23.05.2024
Approved after review: 10.06.2024
Accepted for publication: 22.06.2024