А.А. Алфёров¹, М.М. Ефимова², Ю.Б. Кузьмин³, И.Н. Кузнецов4, Е.С. Герштейн5, Н.Е. Кушлинский6
1–3, 5, 6 ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России (Москва, Россия)
4 МГМСУ им. А.И. Евдокимова Минздрава России (Москва, Россия)
Постановка проблемы. Пристальный интерес онкологов к саркомам костей связан с тем, что эти опухоли чаще встречаются у детей и молодых людей в распространенной стадии заболевания, отличаются крайне агрессивным клиническим течением, резистентностью к проводимой терапии и неблагоприятным прогнозом. Блокада сигнальной системы белка программируемой гибели клетки PD-1/PD-L – наиболее известный, активно используемый и клинически эффективный из новейших методов иммунотерапии, направленных на подавление контрольных точек иммунитета, однако опыт последних лет показывает, что наиболее перспективным клиническим подходом может стать комплексная блокада двух и более контрольных точек иммунитета.
Цель работы – анализ клинической значимости исследования экспрессии и блокировки контрольных точек иммунитета CTLA-4, B7-H3, NKG2D/NKG2DL, HLA-G и других у больных первичными опухолями костей.
Результаты. В настоящее время проводится поиск дополнительных мишеней иммунотерапии и биомаркеров для оценки ее эффективности у онкологических больных. Изучение прогностической значимости TILs, PD-1/PD-L1, антигенов HLA, CTLA-4, B7-H3, NKG2D/NKG2DL, CSPG4, LAG-3, GITR в иммунотерапии злокачественных опухолей, в том числе и сарком костей, активно развивается. В данном обзоре представлены основные и только появляющиеся ингибиторы контрольных точек иммунитета, которые исследуются в эксперименте и проходят первые клинические испытания при лечении сарком костей. Большая часть текущих исследований, от фундаментальных работ до клинических испытаний препаратов-блокаторов, находится в начальной стадии. Основные результаты этих исследований включают оценку эффективности иммунотерапии различных сарком костей с помощью блокаторов контрольных точек в режиме монотерапии или комбинированной терапии, а также их потенциальные побочные эффекты, связанные с иммунитетом.
Практическая значимость. Активное развитие исследований различных контрольных точек иммунитета, поиск препаратов, направленных на их подавление и биологических маркеров для предсказания и оценки их эффективности позволяет надеяться на обнаружение в ближайшее время стандартизованных скрининговых биомаркеров для иммунотерапии такого тяжелого заболевания, как саркомы костей.
Алфёров А.А., Ефимова М.М., Кузьмин Ю.Б., Кузнецов И.Н., Герштейн Е.С., Кушлинский Н.Е. Ключевые контрольные точки иммунитета и их ингибиторы в терапии опухолей костей. Часть 2. Дополнительные мишени иммунотерапии опухолей костей и маркеры для оценки ее эффективности // Технологии живых систем. 2021. Т. 18. № 1. С. 18–31. DOI: 10.18127/j20700997-2
- Buchbinder E., Hodi F.S. Cytotoxic T lymphocyte antigen-4 and immune checkpoint blockade. J. Clin. Invest. 2015. V. 125. № 9. P. 3377–3383.
- Yang J.C., Hughes M., Kammula U., Royal R., Sherry R.M., Topalian S.L., Suri K.B., Levy C., Allen T., Mavroukakis S., Lowy I., White D.E., Rosenberg S.A. Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J. Immunother. 2007. V. 30. № 8. P. 825–830.
- Lynch T.J., Bondarenko I., Luft A., Serwatowski P., Barlesi F., Chacko R., Sebastian M., Neal J., Lu H., Cuillerot J.M., Reck M. Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J. Clin. Oncol. 2012. V. 30. № 17. P. 2046–2054.
- Kwon E.D., Drake C.G., Scher H.I. et al. Investigators. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014. V. 15. № 7. P. 700–712.
- Merchant M.S., Wright M., Baird K., Wexler L.H., Rodriguez-Galindo C., Bernstein D., Delbrook C., Lodish M., Bishop R., Wolchok J.D., Streicher H., Mackall C.L. Phase I clinical trial of ipilimumab in pediatric patients with advanced solid tumors. Clin. Cancer Res. 2016. V. 22. № 6. P. 1364–1370.
- Postow M.A., Chesney J., Pavlick A.C., Robert C., Grossmann K., McDermott D., Linette G.P., Meyer N., Giguere J.K., Agarwala S.S., Shaheen M., Ernstoff M.S., Minor D., Salama A.K., Taylor M., Ott P.A., Rollin L.M., Horak C., Gagnier P., Wolchok J.D., Hodi F.S. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N. Engl. J. Med. 2015. V. 372. № 21. P. 2006–2017.
- Lussier D.M., O'Neill L., Nieves L.M., McAfee M.S., Holechek S.A., Collins A.W., Dickman P., Jacobsen J., Hingorani P., Blattman J.N. Enhanced T-cell immunity to osteosarcoma through antibody blockade of PD-1/PD-L1 interactions. J. Immunother. 2015. V. 38. № 3. P. 96–106.
- D'Angelo S.P., Mahoney M.R., Van Tine B.A., Atkins J., Milhem M.M., Jahagirdar B.N., Antonescu C.R., Horvath E., Tap W.D., Schwartz G.K., Streicher H. Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): two open-label, non-comparative, randomised, phase 2 trials. Lancet Oncol. 2018. V. 19. № 3. P. 416–426.
- Siva S., MacManus M.P., Martin R.F., Martin O.A. Abscopal effects of radiation therapy: a clinical review for the radiobiologist. Cancer Lett. 2015. V. 356. № 1. P. 82–90.
- Lee Y., Auh S.L., Wang Y., Burnette B., Wang Y., Meng Y., Beckett M., Sharma R., Chin R., Tu T., Weichselbaum R.R., Fu Y.X. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood. 2009. V. 114. № 3. P. 589–595.
- Twyman-Saint Victor C., Rech A.J., Maity A., Rengan R., Pauken K.E., Stelekati E., Benci J.L., Xu B., Dada H., Odorizzi P.M., Herati R.S., Mansfield K.D., Patsch D., Amaravadi R.K., Schuchter L.M., Ishwaran H., Mick R., Pryma D.A., Xu X., Feldman M.D., Gangadhar T.C., Hahn S.M., Wherry E.J., Vonderheide R.H., Minn A.J. Radiation and dual checkpoint blockade activate nonredundant immune mechanisms in cancer. Nature. 2015. V. 520. № 7547. P. 373–377.
- Kang J., Demaria S., Formenti S. Current clinical trials testing the combination of immunotherapy with radiotherapy. J. Immunother. Cancer. 2016. V. 4. P. 51.
- Paoluzzi L., Cacavio A., Ghesani M., Karambelkar A., Rapkiewicz A., Weber J., Rosen G. Response to anti-PD1 therapy with nivolumab in metastatic sarcomas. Clin. Sarcoma Res. 2016. V. 6. P. 24.
- Yin S.J., Wang W.J., Zhang J.Y. Expression of B7-H3 in cancer tissue during osteosarcoma progression in nude mice. Genet. Mol. Res. 2015. V. 14. № 4. P. 14253–14261.
- He L., Li Z. B7-H3 and its role in bone cancers. Pathol. Res. Pract. 2019. V. 215. № 6. P. 152420.
- Yang S., Wei W., Zhao Q. B7-H3, a checkpoint molecule, as a target for cancer immunotherapy. Int. J. Biol. Sci. 2020. V. 16. № 11. P. 1767–1773.
- Dong H., Zhu G., Tamada K., Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med. 1999. V. 5. P. 1365–1369.
- Wang S., Zhu G., Chapoval A.I., Dong H., Tamada K., Ni J., Chen L. Costimulation of T cells by B7-H2, a B7-like molecule that binds ICOS. Blood. 2000. V. 96. № 8. P. 2808–2813.
- Chapoval A.I., Ni J., Lau J.S., Wilcox R.A., Flies D.B., Liu D., Dong H., Sica G.L., Zhu G., Tamada K., Chen L. B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production. Nat. Immunol. 2001. V. 2. № 3. P. 269–274.
- Sica G.L., Choi I.H., Zhu G., Tamada K., Wang S.D., Tamura H., Chapoval A.I., Flies D.B., Bajorath J., Chen L. B7-H4, a molecule of the B7 family, negatively regulates T cell immunity. Immunity. 2003. V. 18. № 6. P. 849–861.
- Tseng S.Y., Otsuji M., Gorski K., Huang X., Slansky J.E., Pai S.I., Shalabi A., Shin T., Pardoll D.M. Tsuchiya H. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J. Exp. Med. 2001. V. 193. № 7. P. 839–846.
- Brandt C.S., Baratin M., Yi E.C., Kennedy J., Gao Z., Fox B., Haldeman B., Ostrander C.D., Kaifu T., Chabannon C., Moretta A., West R., Xu W., Vivier E., Levin S.D. The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J. Exp. Med. 2009. V. 206. № 7. P. 1495–1503.
- Picarda E., Ohaegbulam K.C., Zang X. Molecular Pathways: Targeting B7-H3 (CD276) for Human Cancer Immunotherapy. Clin. Cancer Res. 2016. V. 22. № 14. P. 3425–3431.
- Wang L., Zhang Q., Chen W., Shan B., Ding Y., Zhang G., Cao N., Liu L., Zhang Y. B7-H3 is overexpressed in patients suffering osteosarcoma and associated with tumor aggressiveness and metastasis. PLoS One. 2013. V. 8. № 8. e70689.
- Wang L., Kang F.B., Zhang G.C., Wang J., Xie M.F., Zhang Y.Z. Clinical significance of serum soluble B7-H3 in patients with osteosarcoma. Cancer Cell. Int. 2018. V. 18. P. 115.
- Gregorio A., Corrias M.V., Castriconi R., Dondero A., Mosconi M., Gambini C., Moretta A., Moretta L., Bottino C. Small round blue cell tumours: diagnostic and prognostic usefulness of the expression of B7-H3 surface molecule. Histopathology. 2008. V. 53. № 1. P. 73–80.
- Chen Y.W., Tekle C., Fodstad O. The immunoregulatory protein human B7H3 is a tumor-associated antigen that regulates tumor cell migration and invasion. Curr. Cancer Drug. Targets. 2008. V. 8. № 5. P. 404–413.
- Liu F., Zhang T., Zou Sh., Jiang B., Hua D. B7-H3 Promotes Cell Migration and Invasion Through the Jak2/Stat3/MMP9 Signaling Pathway in Colorectal Cancer. Mol. Med. Rep. 2015. V. 12. № 4. P. 5455–5460.
- Kang F.-B., Wang L., Jia H.-C., Li D., Li H.-J., Zhang Y.-G., Sun D.X. B7-H3 promotes aggression and invasion of hepatocellular carcinoma by targeting epithelial-to-mesenchymal transition via JAK2/STAT3/Slug signaling pathway. Cancer Cell Int. 2015. V. 15. P. 45.
- Tekle C., Nygren M.K., Chen Y.-W., Dybsjord I., Nesland J.M., Maelandsmo G.M., Fodstad O. B7-H3 contributes to the metastatic capacity of melanoma cells by modulation of known metastasis associated genes. Int. J. Cancer. 2012. V. 130. № 10. P. 2282–2290.
- Nunes-Xavier C.E., Karlsen K.F., Tekle C., Pedersen C., Øyjord T., Hongisto V., Nesland J.M., Tan M., Sahlberg K.K., Fodstad О. Decreased expression of B7-H3 reduces the glycolytic capacity and sensitizes breast cancer cells to AKT/mTOR inhibitors // Oncotarget. 2016. V. 7. № 6. P. 6891–6901.
- Hu Y., Lv X., Wu Y., Xu J., Wang L., Chen W., Zhang W., Li J., Zhang S., Qiu H. Expression of costimulatory molecule B7-H3 and its prognostic implications in human acute leukemia // Hematology. 2015. V. 20. № 4. P. 187–195.
- Sun J., Guo Y.-D., Li X.-N., Zhang Y.-Q., Gu L., Wu P.-P., Bai G.H., Xiao Y. B7-H3 expression in breast cancer and upregulation of VEGF through gene silence. OncoTargets Ther. 2014. V. 7. P. 1979–1986.
- Zang X., Thompson R.H., Al-Ahmadie H.A., Serio A.M., Reuter V.E., Eastham J.A., Scardino P.T., Sharma P., Allison J.P. B7-H3 and B7x are highly expressed in human prostate cancer and associated with disease spread and poor outcome. Proc. Natl. Acad. Sci. USA. 2007. V. 104. № 49. P. 19458–19463.
- Zang X., Sullivan P.S., Soslow R.A., Waitz R., Reuter V.E., Wilton A., Thaler H.T., Arul M., Slovin S.F., Wei J., Spriggs D.R., Dupont J., Allison J.P. Tumor associated endothelial expression of B7-H3 predicts survival in ovarian carcinomas. Mod. Pathol. 2010. V. 23. № 8. P. 1104–1112.
- Chen Y., Sun J., Zhao H., Zhu D., Zhi Q., Song S., Zhang L., He S., Kuang Y., Zhang Z., Li D. The coexpression and clinical significance of costimulatory molecules B7-H1, B7-H3, and B7-H4 in human pancreatic cancer. OncoTargets Ther. 2014. V. 7. P. 1465–1472.
- Ingebrigtsen V.A., Boye K., Nesland J.M., Nesbakken A., Flatmark K., Fodstad О. B7-H3 expression in colorectal cancer: associations with clinicopathological parameters and patient outcome. BMC Cancer. 2014. V. 14. P. 602.
- Ding H., Yang X., Wei Y. Fusion proteins of NKG2D/NKG2DL in cancer immunotherapy. Int. J. Mol. Sci. 2018. V. 19. № 1. P. 177.
- Wang Z., Wang Z., Li S., Li B., Sun L., Li H., Lin P., Wang S., Teng W., Zhou X., Ye Z. Decitabine enhances Vgamma9Vdelta2 T cell-mediated cytotoxic effects on osteosarcoma cells via the NKG2DL-NKG2D axis. Front. Immunol. 2018. V. 9. P. 1239.
- Fernandez L., Valentin J., Zalacain M., Leung W., Patino-Garcia A., Perez-Martinez A. Activated and expanded natural killer cells target osteosarcoma tumor initiating cells in an NKG2D-NKG2DL dependent manner. Cancer Lett. 2015. V. 368. № 1. P. 54–63.
- Bodduluru L.N., Kasala E.R., Madhana R.M., Sriram C.S. Natural killer cells: the journey from puzzles in biology to treatment of cancer. Cancer Lett. 2015. V. 357. № 2. P. 454–467.
- Klingemann H. Challenges of cancer therapy with natural killer cells. Cytotherapy. 2015. V. 17. № 3. P. 245–249.
- Pérez-Martínez A., Fernández L., Valentín J., Martínez-Romera I., Corral M.D., Ramírez M., Abad L., Santamaría S., González-Vicent M., Sirvent S., Sevilla J., Vicario J.L., de Prada I., Diaz M.А. A phase I/II trial of interleukin-15--stimulated natural killer cell infusion after haplo-identical stem cell transplantation for pediatric refractory solid tumors. Cytotherapy. 2015. V. 17. № 11. P. 1594–1603.
- Fernández L., Metais J.Y., Escudero A., Vela M., Valentín J., Vallcorba I., Leivas A., Torres J., Valeri A., Patiño-García A., Martínez J., Leung W., Pérez-Martínez A. Memory T cells expressing an NKG2D-CAR efficiently target osteosarcoma cells. Clin. Cancer Res. 2017. V. 23. № 19. P. 5824–5835.
- Pule M., Finney H., Lawson A. Artificial T-cell receptors. Cytotherapy. 2003. V. 5. № 3. P. 211–226.
- Lipowska-Bhalla G., Gilham D.E., Hawkins R.E., Rothwell D.G. Targeted immunotherapy of cancer with CAR T cells: achievements and challenges // Cancer Immunol. Immunother. 2012. V. 61. № 7. P. 953–962.
- Chang Y.H., Connolly J., Shimasaki N., Mimura K., Kono K., Campana D. A chimeric receptor with NKG2D specificity enhances natural killer cell activation and killing of tumor cells. Cancer Res. 2013. V. 73. № 6. P. 1777–1786.
- Spear P., Wu M.R., Sentman M.L., Sentman C.L. NKG2D ligands as therapeutic targets. Cancer Immun. 2013. V. 13. P. 8.
- Cai B., Guo M., Wang Y., Zhang Y., Yang J., Guo Y., Dai H., Yu C., Sun Q., Qiao J., Hu K., Zuo H., Dong Z., Zhang Z., Feng M., Li B., Sun Y., Liu T., Liu Z., Wang Y., Huang Y., Yao B., Han W., Ai H. Co-infusion of haplo-identical CD19-chimeric antigen receptor T cells and stem cells achieved full donor engraftment in refractory acute lymphoblastic leukemia. J. Hematol. Oncol. 2016. V. 9. № 1. P. 131.
- Lehner M., Götz G., Proff J., Schaft N., Dörrie J., Full F., Ensser A., Muller Y.A., Cerwenka A., Abken H., Parolini O., Ambros P.F., Kovar H., Holter W. Redirecting T cells to Ewing's sarcoma family of tumors by a chimeric NKG2D receptor expressed by lentiviral transduction or mRNA transfection. PLoS One. 2012. V. 7. e31210.
- LeMaoult J., Caumartin J., Daouya M., Favier B., Le Rond S., Gonzalez A., Carosella E.D. Immune regulation by pretenders: cellto-cell transfers of HLA-G make effector T cells act as regulatory cells. Blood. 2007. V. 109. № 5. P. 2040–2048.
- Feger U., Tolosa E., Huang Y.H., Waschbisch A., Biedermann T., Melms A., Wiendl H. HLA-G expression defines a novel regulatory T-cell subset present in human peripheral blood and sites of inflammation. Blood. 2007. V. 110. № 2. P. 568–577.
- Cotterill S.J., Ahrens S., Paulussen M., Jurgens H.F., Voute P.A., Gadner H., Craft A.W. Prognostic factors in Ewing‘s tumor of bone: analysis of 975 patients from the European Intergroup Cooperative Ewing‘s Sarcoma Study Group. J. Clin. Oncol. 2000. V. 18. № 17. P. 3108–3114.
- Ibrahim E.C., Guerra N., Lacombe M.J., Angevin E., Chouaib S., Carosella E.D., Caignard A., Paul P. Tumor-specific upregulation of the nonclassical class I HLA-G antigen expression in renal carcinoma. Cancer Res. 2001. V. 61. № 18. P. 6838–6845.
- Morandi F., Levreri I., Bocca P., Galleni B., Raffaghello L., Ferrone S., Prigione I., Pistoia V. Human neuroblastoma cells trigger an immunosuppressive program in monocytes by stimulating soluble HLA-G release. Cancer Res. 2007. V. 67. № 13. P. 6433–6441.
- de Kruijf E.M., Sajet A, van Nes J.G., Natanov R., Putter H., Smit V.T., Liefers G.J., van den Elsen P.J., van de Velde C.J., Kuppen P.J. HLA-E, HLA-G expression in classical HLA class I-negative tumors is of prognostic value for clinical outcome of early breast cancer patients. J. Immunol. 2010. V. 185. № 12. P. 7452–7459.
- Rizzo R., Lanzoni G., Stignani M., Campioni D., Alviano F., Ricci F., Tazzari P.L., Melchiorri L., Scalinci S.Z., Cuneo A., Bonsi L., Lanza F., Bagnara G.P., Baricordi O.R. A simple method for identifying bone marrow mesenchymal stromal cells with a high immunosuppressive potential. Cytotherapy. 2011. V. 13. № 5. P. 523–527.
- Kailayangiri S., Altvater B., Spurny C., Jamitzky S., Schelhaas S., Jacobs A.H., Wiek C., Roellecke K., Hanenberg H., Hartmann W., Wiendl H., Pankratz S., Meltzer J., Farwick N., Greune L., Fluegge M., Rossig C. Targeting Ewing sarcoma with activated and GD2-specific chimeric antigen receptor-engineered human NK cells induces upregulation of immune-inhibitory HLA-G. Oncoimmunol. 2016. V. 6. № 1. e1250050.
- Horton R., Wilming L., Rand V., Lovering R.C., Bruford E.A., Khodiyar V.K., Lush M.J., Povey S., Talbot C.C. Jr., Wright M.W., Wain H.M., Trowsdale J., Ziegler A., Beck S. Gene map of the extended human MHC. Nat. Rev. Genet. 2004. V. 5. № 12. P. 889–899.
- Murphy K.M., Travers P. Walport M. Janeway’s Immunobiology. 7 ed. 2007: Garland Science.
- Zinkernagel R.M., Doherty P.C. MHC-restricted cytotoxic T cells: studies on the biological role of polymorphic major transplantation antigens determining T-cell restriction-specificity, function, and responsiveness. Adv. Immunol. 1979. V. 27. P. 51–177.
- Spurny C., Kailayangiri S., Altvater B., Jamitzky S., Hartmann W., Wardelmann E., Ranft A., Dirksen U., Amler S., Hardes J., Fluegge M., Meltzer J., Farwick N., Greune L., Rossig C. T cell infiltration into Ewing sarcomas is associated with local expression of immune-inhibitory HLA-G. Oncotarget. 2018. V. 9. № 5. P. 6536–6549.
- Kostine M., Cleven A.H., de Miranda N.F., Italiano A., Cleton-Jansen A.M., Bovée J.V. Analysis of PD-L1, T-cell infiltrate and HLA expression in chondrosarcoma indicates potential for response to immunotherapy specifically in the dedifferentiated subtype. Mod. Pathol. 2016. V. 29. № 9. P. 1028–1037.
- Wang X., Wang Y., Yu L., Sakakura K., Visus C., Schwab J.H., Ferrone C.R., Favoino E., Koya Y., Campoli M.R., McCarthy J.B., DeLeo A.B., Ferrone S. CSPG4 in cancer: multiple roles. Curr. Mol. Med. 2010. V. 10. 4. P. 419–429.
- Schwab J.H., Boland P.J., Agaram N.P., Socci N.D., Guo T., O'Toole G.C., Wang X., Ostroumov E., Hunter C.J., Block J.A., Doty S., Ferrone S., Healey J.H., Antonescu C.R. Chordoma and chondrosarcoma gene profile: implications for immunotherapy // Cancer Immunol. Immunother. 2009. V. 58. № 3. P. 339–349.
- Schoenfeld A.J., Wang X., Wang Y., Hornicek F.J., Nielsen G.P., Duan Z., Ferrone S., Schwab J.H. CSPG4 as a prognostic biomarker in chordoma. Spine J. 2016. V. 16. № 6. P. 722–727.
- Beard R.E., Zheng Z., Lagisetty K.H., Burns W.R., Tran E., Hewitt S.M., Abate-Daga D., Rosati S.F., Fine H.A., Ferrone S., Rosenberg S.A., Morgan R.A. Multiple chimeric antigen receptors successfully target chondroitin sulfate proteoglycan 4 in several different cancer histologies and cancer stem cells. J. Immunother. Cancer. 2014. V. 2. P. 25.
- Woo S.R., Turnis M.E., Goldberg M.V., Bankoti J., Selby M., Nirschl C.J., Bettini M.L., Gravano D.M., Vogel P., Liu C.L., Tangsombatvisit S., Grosso J.F., Netto G., Smeltzer M.P., Chaux A., Utz P.J., Workman C.J., Pardoll D.M., Korman A.J., Drake C.G., Vignali D.A. Immune Inhibitory Molecules LAG-3 and PD-1 Synergistically Regulate T-cell Function to Promote Tumoral Immune Escape. Cancer Res. 2012. V. 72. № 4. P. 917–927.
- Schaer D.A., Murphy J.T., Wolchok J.D. Modulation of GITR for Cancer Immunotherapy. Curr. Opin. Immunol. 2012. V. 24. № 2. P. 217–224.
- Sanmamed M.F., Pastor F., Rodriguez A., Perez-Gracia J.L., Rodriguez-Ruiz M.E., Jure-Kunkel M., Melero I. Agonists of Costimulation in Cancer Immunotherapy Directed Against CD137, OX40, GITR, CD27, CD28, and ICOS. Semin. Oncol. 2015. V. 42. № 4. P. 640–655.
- Lu L., Xu X., Zhang B., Zhang R., Ji H., Wang X. Combined PD-1 Blockade and GITR Triggering Induce a Potent Antitumor Immunity in Murine Cancer Models and Synergizes With Chemotherapeutic Drugs. J. Transl. Med. 2014. V. 12. P. 36.