350 rub
Journal Technologies of Living Systems №1 for 2021 г.
Article in number:
Key immune checkpoints and their inhibitors in the therapy of bone tumors. Part 2. Additional targets for immunotherapy of bone tumors and markers of its efficiency
DOI: 10.18127/j20700997-202101-02
UDC: 616.71-006-085:612.017.1
Authors:

A.A. Alferov¹, M.M. Efimova², Yu.B. Kuzmin³, I.N. Kuznetsov4, E.S. Gershtein5, N.E. Kushlinskii6

1–3, 5, 6 N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of the Russian Federation (Moscow, Russia)

4 A.I. Evdokimov Moscow University of Medicine and Dentistry of Ministry of Health           of the Russian Federation (Moscow, Russia)

Abstract:

The intent interest of oncologists in bone sarcomas is imposed by the prevalence of these diseases at advanced stages in children, adolescent and young people, its aggressiveness, resistance to chemotherapy, and unfavorable prognosis. Blockade of the signaling system of programmed cell death 1 receptor protein PD-1/PD-L is the most well-known, actively applied and clinically effective method of immune checkpoints targeted antitumor immunotherapy. However, the recent experience shows that the most promising approach could be a complex blockade of two or more immune checkpoints.

Aim of the work – analysis of the clinical implications of the investigation of expression and blockade of such immune checkpoints as CTLA-4, B7-H3, NKG2D/NKG2DL, HLA-G, etc. in primary bone tumor patients.

Currently, the exploration of additional targets for immunotherapy and biological markers for assessment of its efficiency in oncological patients is under investigation. The study of the prognostic value of TILs, PD-1/PD-L1, HLA, CTLA-4, B7-H3, NKG2D/NKG2DL, CSPG4, LAG-3, GITR in the immunotherapy of malignant tumors including bone sarcomas actively proceeds. In this review, the main and just appearing immune checkpoints’ inhibitors, which are experimentally explored and undergo the first clinical trials for the treatment of bone sarcomas are described. The majority of current investigations from basic studies to clinical trials of blocker drugs are still at initial stages. The principal results of these studies describe the assessment of the efficiency of immunotherapy of various bone sarcomas with single immune checkpoint blockers or in combined regimens and their potential irAE – immune-related adverse effects.

Active development of the studies of various immune checkpoints, search of the drugs targeted on their suppression and biological markers of their efficiency allow to expect that in the nearest future standardized panels of screening biomarkers for the immunotherapy of such severe disease as bone sarcomas would be found.

Pages: 18-31
For citation

Alferov A.A., Efimova M.M., Kuzmin Yu.B., Kuznetsov I.N., Gershtein E.S., Kushlinskii N.E. Key immune checkpoints and their inhibitors in the therapy of bone tumors. Part 2. Additional targets for immunotherapy of bone tumors and markers of its efficiency. Technologies of living systems. 2021. V. 18. № 1. P. 18–31. DOI: 10.18127/j20700997-20210102 (In Russian).

References
  1. Buchbinder E., Hodi F.S. Cytotoxic T lymphocyte antigen-4 and immune checkpoint blockade. J. Clin. Invest. 2015. V. 125. № 9. P. 3377–3383.
  2. Yang J.C., Hughes M., Kammula U., Royal R., Sherry R.M., Topalian S.L., Suri K.B., Levy C., Allen T., Mavroukakis S., Lowy I., White D.E., Rosenberg S.A. Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J. Immunother. 2007. V. 30. № 8. P. 825–830.
  3. Lynch T.J., Bondarenko I., Luft A., Serwatowski P., Barlesi F., Chacko R., Sebastian M., Neal J., Lu H., Cuillerot J.M., Reck M. Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J. Clin. Oncol. 2012. V. 30. № 17. P. 2046–2054.
  4. Kwon E.D., Drake C.G., Scher H.I. et al. Investigators. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, doubleblind, phase 3 trial. Lancet Oncol. 2014. V. 15. № 7. P. 700–712.
  5. Merchant M.S., Wright M., Baird K., Wexler L.H., Rodriguez-Galindo C., Bernstein D., Delbrook C., Lodish M., Bishop R., Wolchok J.D., Streicher H., Mackall C.L. Phase I clinical trial of ipilimumab in pediatric patients with advanced solid tumors. Clin. Cancer Res. 2016. V. 22. № 6. P. 1364–1370.
  6. Postow M.A., Chesney J., Pavlick A.C., Robert C., Grossmann K., McDermott D., Linette G.P., Meyer N., Giguere J.K., Agarwala S.S., Shaheen M., Ernstoff M.S., Minor D., Salama A.K., Taylor M., Ott P.A., Rollin L.M., Horak C., Gagnier P., Wolchok J.D., Hodi F.S. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N. Engl. J. Med. 2015. V. 372. № 21. P. 2006–2017.
  7. Lussier D.M., O'Neill L., Nieves L.M., McAfee M.S., Holechek S.A., Collins A.W., Dickman P., Jacobsen J., Hingorani P., Blattman J.N. Enhanced Tcell immunity to osteosarcoma through antibody blockade of PD-1/PD-L1 interactions. J. Immunother. 2015. V. 38. № 3. P. 96–106.
  8. D'Angelo S.P., Mahoney M.R., Van Tine B.A., Atkins J., Milhem M.M., Jahagirdar B.N., Antonescu C.R., Horvath E., Tap W.D., Schwartz G.K., Streicher H. Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): two open-label, noncomparative, randomised, phase 2 trials. Lancet Oncol. 2018. V. 19. № 3. P. 416–426.
  9. Siva S., MacManus M.P., Martin R.F., Martin O.A. Abscopal effects of radiation therapy: a clinical review for the radiobiologist. Cancer Lett. 2015. V. 356. № 1. P. 82–90.
  10. Lee Y., Auh S.L., Wang Y., Burnette B., Wang Y., Meng Y., Beckett M., Sharma R., Chin R., Tu T., Weichselbaum R.R., Fu Y.X. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood. 2009. V. 114. № 3. P. 589–595.
  11. Twyman-Saint Victor C., Rech A.J., Maity A., Rengan R., Pauken K.E., Stelekati E., Benci J.L., Xu B., Dada H., Odorizzi P.M., Herati R.S., Mansfield K.D., Patsch D., Amaravadi R.K., Schuchter L.M., Ishwaran H., Mick R., Pryma D.A., Xu X., Feldman M.D., Gangadhar T.C., Hahn S.M., Wherry E.J., Vonderheide R.H., Minn A.J. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 2015. V. 520. № 7547. P. 373–377.
  12. Kang J., Demaria S., Formenti S. Current clinical trials testing the combination of immunotherapy with radiotherapy. J. Immunother. Cancer. 2016. V. 4. P. 51.
  13. Paoluzzi L., Cacavio A., Ghesani M., Karambelkar A., Rapkiewicz A., Weber J., Rosen G. Response to anti-PD1 therapy with nivolumab in metastatic sarcomas. Clin. Sarcoma Res. 2016. V. 6. P. 24.
  14. Yin S.J., Wang W.J., Zhang J.Y. Expression of B7-H3 in cancer tissue during osteosarcoma progression in nude mice. Genet. Mol. Res. 2015. V. 14. № 4. P. 14253–14261.
  15. He L., Li Z. B7-H3 and its role in bone cancers. Pathol. Res. Pract. 2019. V. 215. № 6. P. 152420.
  16. Yang S., Wei W., Zhao Q. B7-H3, a checkpoint molecule, as a target for cancer immunotherapy. Int. J. Biol. Sci. 2020. V. 16. № 11. P. 1767–1773.
  17. Dong H., Zhu G., Tamada K., Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med. 1999. V. 5. P. 1365–1369.
  18. Wang S., Zhu G., Chapoval A.I., Dong H., Tamada K., Ni J., Chen L. Costimulation of T cells by B7-H2, a B7-like molecule that binds ICOS. Blood. 2000. V. 96. № 8. P. 2808–2813.
  19. Chapoval A.I., Ni J., Lau J.S., Wilcox R.A., Flies D.B., Liu D., Dong H., Sica G.L., Zhu G., Tamada K., Chen L. B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production. Nat. Immunol. 2001. V. 2. № 3. P. 269–274.
  20. Sica G.L., Choi I.H., Zhu G., Tamada K., Wang S.D., Tamura H., Chapoval A.I., Flies D.B., Bajorath J., Chen L. B7-H4, a molecule of the B7 family, negatively regulates T cell immunity. Immunity. 2003. V. 18. № 6. P. 849–861.
  21. Tseng S.Y., Otsuji M., Gorski K., Huang X., Slansky J.E., Pai S.I., Shalabi A., Shin T., Pardoll D.M. Tsuchiya H. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J. Exp. Med. 2001. V. 193. № 7. P. 839–846.
  22. Brandt C.S., Baratin M., Yi E.C., Kennedy J., Gao Z., Fox B., Haldeman B., Ostrander C.D., Kaifu T., Chabannon C., Moretta A., West R., Xu W., Vivier E., Levin S.D. The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J. Exp. Med. 2009. V. 206. № 7. P. 1495–1503.
  23. Picarda E., Ohaegbulam K.C., Zang X. Molecular Pathways: Targeting B7-H3 (CD276) for Human Cancer Immunotherapy. Clin. Cancer Res. 2016. V. 22. № 14. P. 3425–3431.
  24. Wang L., Zhang Q., Chen W., Shan B., Ding Y., Zhang G., Cao N., Liu L., Zhang Y. B7-H3 is overexpressed in patients suffering osteosarcoma and associated with tumor aggressiveness and metastasis. PLoS One. 2013. V. 8. № 8. e70689.
  25. Wang L., Kang F.B., Zhang G.C., Wang J., Xie M.F., Zhang Y.Z. Clinical significance of serum soluble B7-H3 in patients with osteosarcoma. Cancer Cell. Int. 2018. V. 18. P. 115.
  26. Gregorio A., Corrias M.V., Castriconi R., Dondero A., Mosconi M., Gambini C., Moretta A., Moretta L., Bottino C. Small round blue cell tumours: diagnostic and prognostic usefulness of the expression of B7-H3 surface molecule. Histopathology. 2008. V. 53. № 1. P. 73–80.
  27. Chen Y.W., Tekle C., Fodstad O. The immunoregulatory protein human B7H3 is a tumor-associated antigen that regulates tumor cell migration and invasion. Curr. Cancer Drug. Targets. 2008. V. 8. № 5. P. 404–413.
  28. Liu F., Zhang T., Zou Sh., Jiang B., Hua D. B7-H3 Promotes Cell Migration and Invasion Through the Jak2/Stat3/MMP9 Signaling Pathway in Colorectal Cancer. Mol. Med. Rep. 2015. V. 12. № 4. P. 5455–5460.
  29. Kang F.-B., Wang L., Jia H.-C., Li D., Li H.-J., Zhang Y.-G., Sun D.X. B7-H3 promotes aggression and invasion of hepatocellular carcinoma by targeting epithelial-to-mesenchymal transition via JAK2/STAT3/Slug signaling pathway. Cancer Cell Int. 2015. V. 15. P. 45.
  30. Tekle C., Nygren M.K., Chen Y.-W., Dybsjord I., Nesland J.M., Maelandsmo G.M., Fodstad O. B7-H3 contributes to the metastatic capacity of melanoma cells by modulation of known metastasis associated genes. Int. J. Cancer. 2012. V. 130. № 10. P. 2282–2290.
  31. Nunes-Xavier C.E., Karlsen K.F., Tekle C., Pedersen C., Øyjord T., Hongisto V., Nesland J.M., Tan M., Sahlberg K.K., Fodstad О. Decreased expression of B7-H3 reduces the glycolytic capacity and sensitizes breast cancer cells to AKT/mTOR inhibitors. Oncotarget. 2016. V. 7. № 6. P. 6891–6901.
  32. Hu Y., Lv X., Wu Y., Xu J., Wang L., Chen W., Zhang W., Li J., Zhang S., Qiu H. Expression of costimulatory molecule B7-H3 and its prognostic implications in human acute leukemia. Hematology. 2015. V. 20. № 4. P. 187–195.
  33. Sun J., Guo Y.-D., Li X.-N., Zhang Y.-Q., Gu L., Wu P.-P., Bai G.H., Xiao Y. B7-H3 expression in breast cancer and upregulation of VEGF through gene silence. OncoTargets Ther. 2014. V. 7. P. 1979–1986.
  34. Zang X., Thompson R.H., Al-Ahmadie H.A., Serio A.M., Reuter V.E., Eastham J.A., Scardino P.T., Sharma P., Allison J.P. B7-H3 and B7x are highly expressed in human prostate cancer and associated with disease spread and poor outcome. Proc. Natl. Acad. Sci. USA. 2007. V. 104. № 49. P. 19458–19463.
  35. Zang X., Sullivan P.S., Soslow R.A., Waitz R., Reuter V.E., Wilton A., Thaler H.T., Arul M., Slovin S.F., Wei J., Spriggs D.R., Dupont J., Allison J.P. Tumor associated endothelial expression of B7-H3 predicts survival in ovarian carcinomas. Mod. Pathol. 2010. V. 23. № 8. P. 1104–1112.
  36. Chen Y., Sun J., Zhao H., Zhu D., Zhi Q., Song S., Zhang L., He S., Kuang Y., Zhang Z., Li D. The coexpression and clinical significance of costimulatory molecules B7-H1, B7-H3, and B7-H4 in human pancreatic cancer. OncoTargets Ther. 2014. V. 7. P. 1465–1472.
  37. Ingebrigtsen V.A., Boye K., Nesland J.M., Nesbakken A., Flatmark K., Fodstad О. B7-H3 expression in colorectal cancer: associations with clinicopathological parameters and patient outcome. BMC Cancer. 2014. V. 14. P. 602.
  38. Ding H., Yang X., Wei Y. Fusion proteins of NKG2D/NKG2DL in cancer immunotherapy. Int. J. Mol. Sci. 2018. V. 19. № 1. P. 177.
  39. Wang Z., Wang Z., Li S., Li B., Sun L., Li H., Lin P., Wang S., Teng W., Zhou X., Ye Z. Decitabine enhances Vgamma9Vdelta2 T cellmediated cytotoxic effects on osteosarcoma cells via the NKG2DL-NKG2D axis. Front. Immunol. 2018. V. 9. P. 1239.
  40. Fernandez L., Valentin J., Zalacain M., Leung W., Patino-Garcia A., Perez-Martinez A. Activated and expanded natural killer cells target osteosarcoma tumor initiating cells in an NKG2D-NKG2DL dependent manner. Cancer Lett. 2015. V. 368. № 1. P. 54–63.
  41. Bodduluru L.N., Kasala E.R., Madhana R.M., Sriram C.S. Natural killer cells: the journey from puzzles in biology to treatment of cancer. Cancer Lett. 2015. V. 357. № 2. P. 454–467.
  42. Klingemann H. Challenges of cancer therapy with natural killer cells. Cytotherapy. 2015. V. 17. № 3. P. 245–249.
  43. Pérez-Martínez A., Fernández L., Valentín J., Martínez-Romera I., Corral M.D., Ramírez M., Abad L., Santamaría S., González-Vicent M., Sirvent S., Sevilla J., Vicario J.L., de Prada I., Diaz M.А. A phase I/II trial of interleukin-15--stimulated natural killer cell infusion after haplo-identical stem cell transplantation for pediatric refractory solid tumors. Cytotherapy. 2015. V. 17. № 11. P. 1594–1603.
  44. Fernández L., Metais J.Y., Escudero A., Vela M., Valentín J., Vallcorba I., Leivas A., Torres J., Valeri A., Patiño-García A., Martínez J., Leung W., Pérez-Martínez A. Memory T cells expressing an NKG2D-CAR efficiently target osteosarcoma cells. Clin. Cancer Res. 2017.  V. 23. № 19. P. 5824–5835.
  45. Pule M., Finney H., Lawson A. Artificial T-cell receptors. Cytotherapy. 2003. V. 5. № 3. P. 211–226.
  46. Lipowska-Bhalla G., Gilham D.E., Hawkins R.E., Rothwell D.G. Targeted immunotherapy of cancer with CAR T cells: achievements and challenges. Cancer Immunol. Immunother. 2012. V. 61. № 7. P. 953–962.
  47. Chang Y.H., Connolly J., Shimasaki N., Mimura K., Kono K., Campana D. A chimeric receptor with NKG2D specificity enhances natural killer cell activation and killing of tumor cells. Cancer Res. 2013. V. 73. № 6. P. 1777–1786.
  48. Spear P., Wu M.R., Sentman M.L., Sentman C.L. NKG2D ligands as therapeutic targets. Cancer Immun. 2013. V. 13. P. 8.
  49. Cai B., Guo M., Wang Y., Zhang Y., Yang J., Guo Y., Dai H., Yu C., Sun Q., Qiao J., Hu K., Zuo H., Dong Z., Zhang Z., Feng M., Li B., Sun Y., Liu T., Liu Z., Wang Y., Huang Y., Yao B., Han W., Ai H. Co-infusion of haplo-identical CD19-chimeric antigen receptor T cells and stem cells achieved full donor engraftment in refractory acute lymphoblastic leukemia. J. Hematol. Oncol. 2016. V. 9. № 1. P. 131.
  50. Lehner M., Götz G., Proff J., Schaft N., Dörrie J., Full F., Ensser A., Muller Y.A., Cerwenka A., Abken H., Parolini O., Ambros P.F., Kovar H., Holter W. Redirecting T cells to Ewing's sarcoma family of tumors by a chimeric NKG2D receptor expressed by lentiviral transduction or mRNA transfection. PLoS One. 2012. V. 7. e31210.
  51. LeMaoult J., Caumartin J., Daouya M., Favier B., Le Rond S., Gonzalez A., Carosella E.D. Immune regulation by pretenders: cell-to-cell transfers of HLA-G make effector T cells act as regulatory cells. Blood. 2007. V. 109. № 5. P. 2040–2048.
  52. Feger U., Tolosa E., Huang Y.H., Waschbisch A., Biedermann T., Melms A., Wiendl H. HLA-G expression defines a novel regulatory Tcell subset present in human peripheral blood and sites of inflammation. Blood. 2007. V. 110. № 2. P. 568–577.
  53. Cotterill S.J., Ahrens S., Paulussen M., Jurgens H.F., Voute P.A., Gadner H., Craft A.W. Prognostic factors in Ewing‘s tumor of bone: analysis of 975 patients from the European Intergroup Cooperative Ewing‘s Sarcoma Study Group. J. Clin. Oncol. 2000. V. 18. № 17. P. 3108–3114.
  54. Ibrahim E.C., Guerra N., Lacombe M.J., Angevin E., Chouaib S., Carosella E.D., Caignard A., Paul P. Tumor-specific up-regulation of the nonclassical class I HLA-G antigen expression in renal carcinoma. Cancer Res. 2001. V. 61. № 18. P. 6838–6845.
  55. Morandi F., Levreri I., Bocca P., Galleni B., Raffaghello L., Ferrone S., Prigione I., Pistoia V. Human neuroblastoma cells trigger an immunosuppressive program in monocytes by stimulating soluble HLA-G release. Cancer Res. 2007. V. 67. № 13. P. 6433–6441.
  56. de Kruijf E.M., Sajet A, van Nes J.G., Natanov R., Putter H., Smit V.T., Liefers G.J., van den Elsen P.J., van de Velde C.J., Kuppen P.J. HLA-E, HLA-G expression in classical HLA class I-negative tumors is of prognostic value for clinical outcome of early breast cancer patients. J. Immunol. 2010. V. 185. № 12. P. 7452–7459.
  57. Rizzo R., Lanzoni G., Stignani M., Campioni D., Alviano F., Ricci F., Tazzari P.L., Melchiorri L., Scalinci S.Z., Cuneo A., Bonsi L., Lanza F., Bagnara G.P., Baricordi O.R. A simple method for identifying bone marrow mesenchymal stromal cells with a high immunosuppressive potential. Cytotherapy. 2011. V. 13. № 5. P. 523–527.
  58. Kailayangiri S., Altvater B., Spurny C., Jamitzky S., Schelhaas S., Jacobs A.H., Wiek C., Roellecke K., Hanenberg H., Hartmann W., Wiendl H., Pankratz S., Meltzer J., Farwick N., Greune L., Fluegge M., Rossig C. Targeting Ewing sarcoma with activated and GD2-specific chimeric antigen receptor-engineered human NK cells induces upregulation of immune-inhibitory HLA-G. Oncoimmunol. 2016. V. 6. № 1. e1250050.
  59. Horton R., Wilming L., Rand V., Lovering R.C., Bruford E.A., Khodiyar V.K., Lush M.J., Povey S., Talbot C.C. Jr., Wright M.W., Wain H.M., Trowsdale J., Ziegler A., Beck S. Gene map of the extended human MHC. Nat. Rev. Genet. 2004. V. 5. № 12. P. 889–899.
  60. Murphy K.M., Travers P. Walport M. Janeway’s Immunobiology. 7 ed. 2007: Garland Science.
  61. Zinkernagel R.M., Doherty P.C. MHC-restricted cytotoxic T cells: studies on the biological role of polymorphic major transplantation antigens determining T-cell restriction-specificity, function, and responsiveness. Adv. Immunol. 1979. V. 27. P. 51–177.
  62. Spurny C., Kailayangiri S., Altvater B., Jamitzky S., Hartmann W., Wardelmann E., Ranft A., Dirksen U., Amler S., Hardes J., Fluegge M., Meltzer J., Farwick N., Greune L., Rossig C. T cell infiltration into Ewing sarcomas is associated with local expression of immuneinhibitory HLA-G. Oncotarget. 2018. V. 9. № 5. P. 6536–6549.
  63. Kostine M., Cleven A.H., de Miranda N.F., Italiano A., Cleton-Jansen A.M., Bovée J.V. Analysis of PD-L1, T-cell infiltrate and HLA expression in chondrosarcoma indicates potential for response to immunotherapy specifically in the dedifferentiated subtype. Mod. Pathol. 2016. V. 29. № 9. P. 1028–1037.
  64. Wang X., Wang Y., Yu L., Sakakura K., Visus C., Schwab J.H., Ferrone C.R., Favoino E., Koya Y., Campoli M.R., McCarthy J.B., DeLeo A.B., Ferrone S. CSPG4 in cancer: multiple roles. Curr. Mol. Med. 2010. V. 10.  4. P. 419–429.
  65. Schwab J.H., Boland P.J., Agaram N.P., Socci N.D., Guo T., O'Toole G.C., Wang X., Ostroumov E., Hunter C.J., Block J.A., Doty S., Ferrone S., Healey J.H., Antonescu C.R. Chordoma and chondrosarcoma gene profile: implications for immunotherapy. Cancer Immunol. Immunother. 2009. V. 58. № 3. P. 339–349.
  66. Schoenfeld A.J., Wang X., Wang Y., Hornicek F.J., Nielsen G.P., Duan Z., Ferrone S., Schwab J.H. CSPG4 as a prognostic biomarker in chordoma. Spine J. 2016. V. 16. № 6. P. 722–727.
  67. Beard R.E., Zheng Z., Lagisetty K.H., Burns W.R., Tran E., Hewitt S.M., Abate-Daga D., Rosati S.F., Fine H.A., Ferrone S., Rosenberg S.A., Morgan R.A. Multiple chimeric antigen receptors successfully target chondroitin sulfate proteoglycan 4 in several different cancer histologies and cancer stem cells. J. Immunother. Cancer. 2014. V. 2. P. 25.
  68. Woo S.R., Turnis M.E., Goldberg M.V., Bankoti J., Selby M., Nirschl C.J., Bettini M.L., Gravano D.M., Vogel P., Liu C.L., Tangsombatvisit S., Grosso J.F., Netto G., Smeltzer M.P., Chaux A., Utz P.J., Workman C.J., Pardoll D.M., Korman A.J., Drake C.G., Vignali D.A. Immune Inhibitory Molecules LAG-3 and PD-1 Synergistically Regulate T-cell Function to Promote Tumoral Immune Escape. Cancer Res. 2012. V. 72. № 4. P. 917–927.
  69. Schaer D.A., Murphy J.T., Wolchok J.D. Modulation of GITR for Cancer Immunotherapy. Curr. Opin. Immunol. 2012. V. 24. № 2. P. 217–224.
  70. Sanmamed M.F., Pastor F., Rodriguez A., Perez-Gracia J.L., Rodriguez-Ruiz M.E., Jure-Kunkel M., Melero I. Agonists of Co-stimulation in Cancer Immunotherapy Directed Against CD137, OX40, GITR, CD27, CD28, and ICOS. Semin. Oncol. 2015. V. 42. № 4. P. 640–655.
  71. Lu L., Xu X., Zhang B., Zhang R., Ji H., Wang X. Combined PD-1 Blockade and GITR Triggering Induce a Potent Antitumor Immunity in Murine Cancer Models and Synergizes With Chemotherapeutic Drugs. J. Transl. Med. 2014. V. 12. P. 36.
Date of receipt: 20.07.2020
Approved after review: 24.08.2020
Accepted for publication: 25.09.2020