350 руб
Журнал «Наукоемкие технологии» №2 за 2017 г.
Статья в номере:
Исследование методами компьютерного моделирования наноскопических характеристик композиционных материалов
Авторы:
А.П. Коржавый - д.т.н., профессор, Калужский филиал МГТУ им. Н.Э. Баумана
E-mail: fn2kf@list.ru
Б.М. Логинов - д.ф.-м.н., профессор, Калужский филиал МГТУ им. Н.Э. Баумана
E-mail: bmloginov@kaluga.ru
М.Б. Логинова - к.ф.-м.н., доцент, Калужский филиал МГТУ им. Н.Э. Баумана
E-mail: bmloginov@kaluga.ru
Ю.С. Белов - к.ф.-м.н., доцент, Калужский филиал МГТУ им. Н.Э. Баумана
E-mail: ybs82@mail.ru
С.В. Рыбкин - к.ф.-м.н., доцент, Калужский филиал МГТУ им. Н.Э. Баумана
E-mail: bmloginov@kaluga.ru
Аннотация:
Рассмотрены современные методы компьютерного анализа свойств полимерных композиционных материалов, армированных углеродными нанотрубками. Систематизированы данные теоретических исследований, связанных с изучением влияния различных факторов на механические свойства и характеристики композиционных полимерных материалов.
Страницы: 53-63
Список источников
- Lordi V., Yao N. Molecular mechanics of binding in carbon nanotubes-polymer composites // J. Mater. Res. 2000. V. 15. P. 2770−2779.
- Liao K., Li S. Interfacial characteristics of a carbon nanotube-polystyrene composite system // Applied Physics Letters. 2001. V. 79. № 25. P. 4225−4227.
- Frankland S.J.V., Harik V.M. Analysis of carbon nanotube pull-out from a polymer matrix // Surface Science. 2003. V. 525. № 1−3. P. L103−108.
- Wong M. et al. Physical interactions at carbon nanotube - polymer interface // Polymer. 2003. V. 44. P. 7757−7764.
- Odegard G.M. et al. Constitutive modelling of nanotube-reinforced polymer composites // Compos. Sci. Tech. №l. 2003. V. 63. № 11. P. 1671−1687.
- Liang Z.Y. et al. Investigation of molecular interaction between (10,10) single-walled nanotube and EPON 862 resin/DETDA curing agent molecules // Material Science and Engineering. A. 2004. V. 365. P. 228−234.
- Gou J. et al. Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites // Computational Materials Science. 2004. V. 31. № 3−4. P. 225−236.
- Yang M., Koutsos V., Zaiser M. Interactions between polymers and carbon nanotubes: A molecular dynamics study // J. Phys. Chem. B. 2005. V. 109. P. 10009−10014.
- Han S.S. et al. Theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. II. Collision, storage, and adsorption // J. Chem. Phys. 2005. V. 123. P. 114704(7).
- Gou J. et al. Study of affinities between single-walled nanotube and epoxy resin using molecular dynamics simulations // International Journal of Nanoscience. 2006. V. 5. № 1. P. 131−144.
- Gou J., Anumakonda K., Khan A. Molecular dynamics simulation of functionalized carbon nanofibers and polymer resins // International Journal of Nanoscience. 2007. V. 6. № 4. P. 1−14.
- Han Y., Elliott J. Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites // Computational Materials Science. 2007. V. 39. P. 315−323.
- Zheng Q. et al. Investigation of molecular interactions between SWNT and polyethylene/polypropylene/polystyrene/polyaniline molecules // J. Phys. Chem. C. 2007. V. 111. P. 4628−4635.
- Zheng Q. et al. Influence of chirality on the interfacial bonding characteristics of carbon nanotube polymer composites // Journal of Applied Physics. 2008. V. 103. P. 044302(11).
- Chen H. et al. Influence of nanotube chirality, temperature and chemical modification on the interfacial bonding between carbon nanotubes and polyphenylacetylene // J. Phys. Chem. C. 2008. V. 112. P. 16514−16520.
- Zheng Q. et al. Computational analysis of effect of modification on the interfacial characteristics of a carbon nanotube-polyethylene composite system // Applied Surface Science. 2009. V. 255. P. 3534−3543.
- Alkhateb H., Al-Ostaz A., Cheng A.H.-D. Molecular dynamics simulations of graphite-vinylester nanocomposites and their constituents // Carbon Letters. 2010. V. 11. № 4. P. 316−324.
- Hossain D. et al. Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene // Polymer. 2010. V. 51. № 25. P. 6071−6083.
- Zhang Z.Q. et al. Interfacial characteristics of carbon nanotube-polyethylene composites using molecular dynamics simulations // Materials Science. 2011. V. 211. P. 145042 (10).
- Zaminpayma E., Mirabbaszadeh K. Investigation of molecular interaction between single-walled carbon nanotubes and conjugated polymers // Polymer Composites. 2012. V. 33. № 4. P. 548−554.
- Zaminpayma E., Mirabbaszadeh K. Investigation between single-walled carbon nanotubes and polymers: A molecular dynamics simulation study with reactive force field // Computational Materials Science. 2012. V. 58. P. 7−11.
- Saha L.C., Mian S.A., Jang J. Molecular dynamics simulation study on the carbon nanotube interacting with a polymer // Bull. Korean Chem. Soc. 2012. V. 33. № 3. P. 893−896.
- Fisher F.T., Brinson L.C. Viscoelastic interphases in polymer matrix composites: theoretical models and finite element analysis // Composites Science and Technology. 2001. V. 61. P. 731−748.
- Fisher F.T., Bradshaw R.D., Brinson L.C. Effects of nanotube waviness on the modulus of nanotube-reinforced polymers // Applied Physics Letters. 2002. V. 80. № 24. P. 4647−4649.
- Liu Y.J., Chen X.L. Continuum models of carbon nanotube-based composites using the boundary element method // Electron. J. Bound. Elem. 2003. V. 1. № 2. P. 316−335.
- Liu Y., Nishimura N., Otani Y. Large-scale modeling of carbon-nanotube composites by a fast multipole boundary element method // Computational Materials Science. 2005. V. 34. P. 173−187.
- Jiang L.Y. et al. A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force // Journal of the Mechanics and Physics of Solids. 2006. V. 54. P. 2436−2452.
- Gorski R. Elastic properties of composites reinforced by wavy carbon nanotubes // Mechanics and control. 2011. V. 30. № 4. P. 203−212.
- Ramachandran K.I., Deepa G., Namboori K. Computational chemistry and molecular modeling. Principles and applications. Berlin: Springer. 2008. 397 p.
- Brenner D.W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films // Physical Review. B. 1990. V. 42. № 15. P. 9458−9471.
- Cornell W.D. et al. A second generation force field for the simulation of proteins, nucleic acids and organic molecules // Journal of the American Chemical Society. 1995. V. 117. P. 5179−5197.
- Allinger N.L., Yuh Y.H., Lii J.H. Molecular mechanics. The MM3 force field for hydrocarbons. 1 // Journal of the American Chemical Society. 1989. V. 111. № 23. P. 8551−8566.
- Lii J.H., Allinger N.L. Molecular mechanics. The MM3 force field for hydrocarbons. 2. Vibrational frequencies and thermodynamics // Journal of the American Chemical Society. 1989. V. 111. № 23. P. 8566−8575.
- Lii J.H., Allinger N.L. Molecular mechanics. The MM3 force field for hydrocarbons. 3. The van der Waals - potentials and crystal data for aliphatic and aromatic hydrocarbons// Journal of the American Chemical Society. 1989. V. 111. № 23. P. 8576−8582.
- Ponder J.W., Case D.A. Force fields for protein simulations // Advances in Protein Chemistry. 2003. V. 66. P. 27−85.
- Gou J. et al. Computational analysis of effect of single-walled carbon nanotube rope on molecular interaction and load transfer of nanocomposites // Composites Part B. Engineering. 2005. V. 36. № 6−7. P. 524−533.
- Verlet L. Computer experiments on classical fluids. I. Thermodynamic properties of Lenard-Jones molecules // Phys. Rev. 1967. V. 159. P. 98−103.
- Berendsen H.J.C. Molecular dynamics with coupling to external bath // J. Chem. Phys. 1984. V. 81. № 8. P. 3684−3698.
- Ryckaert J.P., Ciccotti G., Berendsen H.J.C. Numerical integration of the cartesian equations of a system with constraints: molecular dynamics of n-alkanes // J. Comp. Phys. 1977. V. 23. P. 327−341.
- Yazdchi K., Salehi M. The effects of CNT waviness on interfacial stress transfer characteristics of CNT/polymer composites // Composites. Part A. 2011. V. 42. P. 1301−1309.
- Yazdchi K., Salehi M., Shokrieh M.M. Analytical and numerical techniques for predicting the interfacial stresses of wavy carbon nanotube/polymer composites // Mech. Compos. Mater. 2009. V. 45. № 2. P. 207−212.
- Wan H., Delale F., Shen L. Effect of CNT length and CNT-matrix interphase in carbon nanotube (CNT) reinforced composites // Mech. Res. Commun. 2005. V. 32. № 5. P. 481−489.
- Lau K.T., Gu C., Hui D. A critical review on nanotube and nanotube/nanoclay related polymer composite materials // Composites. Part B. 2006. V. 37. P. 425−436.
- Tan H. et al. The effect of van der Waals-based interface cohesive law on carbon nanotube-reinforced composite materials // Composites Science and Technology. 2007. V. 67. P. 2941−2946.
- Mori T., Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions // Acta Metallurgica. 1973. V. 21. P. 571−574.