350 rub
Journal Science Intensive Technologies №2 for 2017 г.
Article in number:
Nanoscopic composite materials characteristics study by computer simulation methods
Authors:
A.P. Korzhavyi - Dr. Sc. (Eng.), Professor, Kaluga branch of the Bauman MSTU E-mail: fn2kf@list.ru B.M. Loginov - Dr. Sc. (Phys.-Math.), Professor, Kaluga branch of the Bauman MSTU E-mail: bmloginov@kaluga.ru M.B. Loginova - Ph. D. (Phys.-Math.), Associate Professor, Kaluga branch of the Bauman MSTU E-mail: bmloginov@kaluga.ru Yu.S. Belov - Ph. D. (Phys.-Math.), Associate Professor, Kaluga branch of the Bauman MSTU E-mail: ybs82@mail.ru S.V. Rybkin - Ph. D. (Phys.-Math.), Associate Professor, Kaluga branch of the Bauman MSTU E-mail: bmloginov@kaluga.ru
Abstract:
The systematization of modern methods of computer simulation study of the mechanical properties of polymer composites materials reinforced by carbon nanotubes have been carried out. Analysis of the results of studying the load distribution and transfer mechanisms in the composite material showed that adhesion properties multiple improvement could be achieved by functionalization of the interfacial surfaces by certain groups of chemisorbents. The results of theoretical studies of carbon nanotubes concentration influence on mechanical properties of composite materials for various polymer matrices have been summarized.
Pages: 53-63
References

 

  1. Lordi V., Yao N. Molecular mechanics of binding in carbon nanotubes-polymer composites // J. Mater. Res. 2000. V. 15. P. 2770−2779.
  2. Liao K., Li S. Interfacial characteristics of a carbon nanotube-polystyrene composite system // Applied Physics Letters. 2001. V. 79. № 25. P. 4225−4227.
  3. Frankland S.J.V., Harik V.M. Analysis of carbon nanotube pull-out from a polymer matrix // Surface Science. 2003. V. 525. № 1−3. P. L103−108.
  4. Wong M. et al. Physical interactions at carbon nanotube - polymer interface // Polymer. 2003. V. 44. P. 7757−7764.
  5. Odegard G.M. et al. Constitutive modelling of nanotube-reinforced polymer composites // Compos. Sci. Tech. №l. 2003. V. 63. № 11. P. 1671−1687.
  6. Liang Z.Y. et al. Investigation of molecular interaction between (10,10) single-walled nanotube and EPON 862 resin/DETDA curing agent molecules // Material Science and Engineering. A. 2004. V. 365. P. 228−234.
  7. Gou J. et al. Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites // Computational Materials Science. 2004. V. 31. № 3−4. P. 225−236.
  8. Yang M., Koutsos V., Zaiser M. Interactions between polymers and carbon nanotubes: A molecular dynamics study // J. Phys. Chem. B. 2005. V. 109. P. 10009−10014.
  9. Han S.S. et al. Theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. II. Collision, storage, and adsorption // J. Chem. Phys. 2005. V. 123. P. 114704(7).
  10. Gou J. et al. Study of affinities between single-walled nanotube and epoxy resin using molecular dynamics simulations // International Journal of Nanoscience. 2006. V. 5. № 1. P. 131−144.
  11. Gou J., Anumakonda K., Khan A. Molecular dynamics simulation of functionalized carbon nanofibers and polymer resins // International Journal of Nanoscience. 2007. V. 6. № 4. P. 1−14.
  12. Han Y., Elliott J. Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites // Computational Materials Science. 2007. V. 39. P. 315−323.
  13. Zheng Q. et al. Investigation of molecular interactions between SWNT and polyethylene/polypropylene/polystyrene/polyaniline molecules // J. Phys. Chem. C. 2007. V. 111. P. 4628−4635.
  14. Zheng Q. et al. Influence of chirality on the interfacial bonding characteristics of carbon nanotube polymer composites // Journal of Applied Physics. 2008. V. 103. P. 044302(11).
  15. Chen H. et al. Influence of nanotube chirality, temperature and chemical modification on the interfacial bonding between carbon nanotubes and polyphenylacetylene // J. Phys. Chem. C. 2008. V. 112. P. 16514−16520.
  16. Zheng Q. et al. Computational analysis of effect of modification on the interfacial characteristics of a carbon nanotube-polyethylene composite system // Applied Surface Science. 2009. V. 255. P. 3534−3543.
  17. Alkhateb H., Al-Ostaz A., Cheng A.H.-D. Molecular dynamics simulations of graphite-vinylester nanocomposites and their constituents // Carbon Letters. 2010. V. 11. № 4. P. 316−324.
  18. Hossain D. et al. Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene // Polymer. 2010. V. 51. № 25. P. 6071−6083.
  19. Zhang Z.Q. et al. Interfacial characteristics of carbon nanotube-polyethylene composites using molecular dynamics simulations // Materials Science. 2011. V. 211. P. 145042 (10).
  20. Zaminpayma E., Mirabbaszadeh K. Investigation of molecular interaction between single-walled carbon nanotubes and conjugated polymers // Polymer Composites. 2012. V. 33. № 4. P. 548−554.
  21. Zaminpayma E., Mirabbaszadeh K. Investigation between single-walled carbon nanotubes and polymers: A molecular dynamics simulation study with reactive force field // Computational Materials Science. 2012. V. 58. P. 7−11.
  22. Saha L.C., Mian S.A., Jang J. Molecular dynamics simulation study on the carbon nanotube interacting with a polymer // Bull. Korean Chem. Soc. 2012. V. 33. № 3. P. 893−896.
  23. Fisher F.T., Brinson L.C. Viscoelastic interphases in polymer matrix composites: theoretical models and finite element analysis // Composites Science and Technology. 2001. V. 61. P. 731−748.
  24. Fisher F.T., Bradshaw R.D., Brinson L.C. Effects of nanotube waviness on the modulus of nanotube-reinforced polymers // Applied Physics Letters. 2002. V. 80. № 24. P. 4647−4649.
  25. Liu Y.J., Chen X.L. Continuum models of carbon nanotube-based composites using the boundary element method // Electron. J. Bound. Elem. 2003. V. 1. № 2. P. 316−335.
  26. Liu Y., Nishimura N., Otani Y. Large-scale modeling of carbon-nanotube composites by a fast multipole boundary element method // Computational Materials Science. 2005. V. 34. P. 173−187.
  27. Jiang L.Y. et al. A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force // Journal of the Mechanics and Physics of Solids. 2006. V. 54. P. 2436−2452.
  28. Gorski R. Elastic properties of composites reinforced by wavy carbon nanotubes // Mechanics and control. 2011. V. 30. № 4. P. 203−212.
  29. Ramachandran K.I., Deepa G., Namboori K. Computational chemistry and molecular modeling. Principles and applications. Berlin: Springer. 2008. 397 p.
  30. Brenner D.W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films // Physical Review. B. 1990. V. 42. № 15. P. 9458−9471.
  31. Cornell W.D. et al. A second generation force field for the simulation of proteins, nucleic acids and organic molecules // Journal of the American Chemical Society. 1995. V. 117. P. 5179−5197.
  32. Allinger N.L., Yuh Y.H., Lii J.H. Molecular mechanics. The MM3 force field for hydrocarbons. 1 // Journal of the American Chemical Society. 1989. V. 111. № 23. P. 8551−8566.
  33. Lii J.H., Allinger N.L. Molecular mechanics. The MM3 force field for hydrocarbons. 2. Vibrational frequencies and thermodynamics // Journal of the American Chemical Society. 1989. V. 111. № 23. P. 8566−8575.
  34. Lii J.H., Allinger N.L. Molecular mechanics. The MM3 force field for hydrocarbons. 3. The van der Waals - potentials and crystal data for aliphatic and aromatic hydrocarbons// Journal of the American Chemical Society. 1989. V. 111. № 23. P. 8576−8582.
  35. Ponder J.W., Case D.A. Force fields for protein simulations // Advances in Protein Chemistry. 2003. V. 66. P. 27−85.
  36. Gou J. et al. Computational analysis of effect of single-walled carbon nanotube rope on molecular interaction and load transfer of nanocomposites // Composites Part B. Engineering. 2005. V. 36. № 6−7. P. 524−533.
  37. Verlet L. Computer experiments on classical fluids. I. Thermodynamic properties of Lenard-Jones molecules // Phys. Rev. 1967. V. 159. P. 98−103.
  38. Berendsen H.J.C. Molecular dynamics with coupling to external bath // J. Chem. Phys. 1984. V. 81. № 8. P. 3684−3698.
  39. Ryckaert J.P., Ciccotti G., Berendsen H.J.C. Numerical integration of the cartesian equations of a system with constraints: molecular dynamics of n-alkanes // J. Comp. Phys. 1977. V. 23. P. 327−341.
  40. Yazdchi K., Salehi M. The effects of CNT waviness on interfacial stress transfer characteristics of CNT/polymer composites // Composites. Part A. 2011. V. 42. P. 1301−1309.
  41. Yazdchi K., Salehi M., Shokrieh M.M. Analytical and numerical techniques for predicting the interfacial stresses of wavy carbon nanotube/polymer composites // Mech. Compos. Mater. 2009. V. 45. № 2. P. 207−212.
  42. Wan H., Delale F., Shen L. Effect of CNT length and CNT-matrix interphase in carbon nanotube (CNT) reinforced composites // Mech. Res. Commun. 2005. V. 32. № 5. P. 481−489.
  43. Lau K.T., Gu C., Hui D. A critical review on nanotube and nanotube/nanoclay related polymer composite materials // Composites. Part B. 2006. V. 37. P. 425−436.
  44. Tan H. et al. The effect of van der Waals-based interface cohesive law on carbon nanotube-reinforced composite materials // Composites Science and Technology. 2007. V. 67. P. 2941−2946.
  45. Mori T., Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions // Acta Metallurgica. 1973. V. 21. P. 571−574.