350 руб
Журнал «Наукоемкие технологии» №7 за 2013 г.
Статья в номере:
Моделирование процессов синтеза нитевидных кристаллов алмаза в мягких условиях
Авторы:
А.П. Коржавый - д.т.н., профессор, зав. кафедрой, Калужский филиал МГТУ им. Н.Э. Баумана. E-mail: fn2-kf@bmstu-kaluga.ru Б.М. Логинов - д. ф.-м.н., профессор, зав. кафедрой, Калужский филиал МГТУ им. Н.Э. Баумана. E-mail: bmloginov@kaluga.ru М.Б. Логинова - аспирант, Калужский филиал МГТУ им. Н.Э. Баумана К.В. Марамыгин - аспирант, Калужский филиал МГТУ им. Н.Э. Баумана И.В. Федосеев - д.т.н., профессор, Калужский филиал МГТУ им. Н.Э. Баумана. E-mail: fn2kf@list.ru
Аннотация:
На основании краткого обзора литературных данных результатов исследования процессов адсорбции оксида углерода на поверхность d-металлов и полученных авторами экспериментальных результатов синтеза нитевидных кристаллов алмаза (НКА) на основе деструкции карбонильных кластеров палладия разработана эмпирическая модель синтеза НКА в мягких условиях. Методом компьютерного моделирования, в полуклассическом молекулярно динамическом приближении сильных связей (МДСС), проведен анализ отдельных аспектов процесса синтеза НКА. Установлены закономерности влияния формирующего давления на особенности структуры синтезируемых кристаллов. Показано, что МДСС-методы могут служить платформой для эффективного поиска оптимальных условий синтеза идеальных кристаллов.
Страницы: 4-19
Список источников

  1. Cremer D. Density functional theory: coverage of dynamic and non-dynamic electron correlation effects // Molecular Physics. 2001. V. 99. №23. P. 1899-1940.
  2. Smith G.W., Carter E.A. Interaction of NO and CO with Pd and Pt atoms // J. Phys. Chem. 1991. V. 95. P. 2327-2339.
  3. Braun J., Kostov K.L., Witte G., WöllC. CO overlayers on Ru(0001) studied by helium atom scattering: Structure, dynamics, and the influence of coadsorbed H and O // J. Chem. Phys. 1997. V. 106. P. 8262-8273.
  4. Liu Z.P., Hu P. A new insight into Fischer-Tropsch synthesis // J. Am. Chem. Soc. 2002. V. 124. P. 11568-11669.
  5. Nagata T., Pohl M., Weiner H., Finke R.G. Polyoxoanion-supported organometallic complexes: Carbonyls of rhenium(I), iridium(I), and rhodium(I) that are soluble analogs of solid-oxide-supported M(CO)+n and that exhibit novel M(CO)+n mobility // Inorg. Chem. 1997. V. 36. P. 1366-1374.
  6. Held G., Schuler J., Sklarek W., Steinrück H.-P. Determination of adsorption sites of pure and coadsorbed CO on Ni(111) by high resolution X-ray photoelectron spectroscopy //Surface Science. 1998. V. 398. №1-2. P. 154-171.
  7. Michaelis M., Henglein A. Reduction of Pd(II) in aqueous solution-stabilization and reactions of an intermediate cluster and Pd colloid formation // J. Phys. Chem. 1992. V. 96. P. 4719-4724.
  8. Ozkar S., Finke R. Transition-metal nanocluster stabilization fundamental studies: hydrogen phosphate as a simple, effective, readily available, robust, and previously unappreciated stabilizer for well-formed, isolable, and redissolvable Ir(0) and other transition- metal nanoclusters // Langmuir. 2003. V. 19. P. 6247-6260.
  9. Bunluesin T., Putna E., Gorte R. A comparison of CO oxidation on ceria supported Pt, Pd and Rh // Catalysis Letters. 1996. V. 41. P. 1-5.
  10. Wong Y.T., Hoffmann R. Chemisorption of carbon monoxide on three metal surfaces: Ni(111), Pd(111) and Pt(111). A comparative study // J. of Physical Chemistry. 1991. V. 95. №2. P. 859-867.
  11. Steininger H., Lehwald S., Ibach H. On the adsorption of CO on Pt(111) // Surface Science. 1982. V. 123. P. 264-282.
  12. Su X.C., Cremer P.S., Shen Y.R., Somorjai G.A. High-pressure CO oxidation on Pt(111) monitored with infrared-visible sum frequency generation (SFG) // J. Am. Chem. Soc. 1997. V. 119. P. 3994-3999.
  13. Szanyi J., Goodman D.W. CO oxidation on palladium - a combined kinetic-infrared reflection-absorption spectroscopic study of Pd(100) // J. Phys. Chem. 1994. V. 98. P. 2972-2978.
  14. Berlowitz P.J., Peden C.H.F., Goodman D.W. Kinetics of CO oxidation on single-crystal Pd, Pt and Ir. // J. Phys. Chem. 1988. V. 92. P. 5213-5221.
  15. Klotzer B., Unterberger W., Hayek K. Adsorption and hydrogenation of CO on Pd(111) and Rh(111) modified by subsurface vanadium // Surface Science. 2003. V. 532-535. P. 142-147.
  16. Ali T., Klotzer B., Walker A.V., King D.A. A molecular beam study of nonlinearity in the CO-induced surface restructuring of Ir{100} // J. Chem. Phys. 1998. V. 109. №24. P. 10996-11009.
  17. Pfnur H. et al. High resolution vibration spectroscopy of CO on Ru(001): The importance of lateral interactions // Surface Science. 1980. V. 93. №2-3. P. 431-452.
  18. Hieu N.V., Craig J.H. Jr. TDS and ESD study of CO on palladium // Surface Science. 1984. V. 145. №2-3. P. L493-L500.
  19. Wang J., Wang Y., Jacobi K. The molecular adsorption of CO on the Ru(1120) surface // Surface Science. 2001. V. 482-485. P. 153-159.
  20. Love J.G., Haq S., KingD.A. The interaction between H and CO coadsorbed on Ni{110} // J. Chem. Phys. 1992. V. 97. P. 8789-8797.
  21. Krenn G., Bako I., Schennach R.CO adsorption and CO and O coadsorption on Rh(111) studied by reflection absorption infrared spectroscopy and density functional theory // J. Chem. Phys. 2006. V. 124. P. 144703-144724.
  22. Craig J.H. Jr. Adsorption of H2 and CO on rhodium // Application of Surface Science. 1984. V. 17. P. 379-389.
  23. Hofmann P., Bare S.R., Richardson N.V., King D.A. Orientation of chemisorbed speciesfrom orthogonal-plane arups: Tilted CO on Pt{110} and upright CO on Pt{111} // Solid State Communications. 1982. V. 42. №9. P. 645-651.
  24. Fielicke A. et al. Vibrational spectroscopy of CO in gas-phase rhodium cluster-CO complexes // J. Am. Chem. Soc. 2003. V. 125. P. 11184-11185.
  25. Fielicke A. et al. Size and charge effects on the binding of CO to small isolated rhodium clusters // J. Phys. Chem. B. 2004. V. 108. P. 14591-14598.
  26. Fielicke A. et al. Size and charge effects on the binding of CO to late transition metal clusters // J. Chem. Phys. 2006. V. 124. P. 194305-194312.
  27. Fielicke A. et al. Gold cluster carbonyls: Vibrational spectroscopy of the anions and the effects of cluster size, charge, and coverage on the CO stretching frequency // J. Phys. Chem. B. 2005. V. 109. P. 23935-23940.
  28. Fielicke A. et al. Gold cluster carbonyls: Saturated adsorption of CO on gold cluster cations, vibrational spectroscopy, and implications for their structures // J. Am. Chem. Soc. 2005. V. 127. P. 8416-8423.
  29. Fielicke A. et al. Direct observation of size dependent activation of NO on gold clusters // Phys. Chem. Chem. Phys. 2005. V. 7. P. 3906-3909.
  30. Gruene P., Fielicke A., Meijer G., Rayner D.M. The adsorption of CO on group 10 (Ni, Pd, Pt) transition-metal clusters // Phys. Chem. Chem. Phys. 2008. V. 10. P. 6144-6149.
  31. Fielicke A., Gruene P., Meijer G., Rayner D.M. The adsorption of CO on transition metal clusters: A case study of cluster surface chemistry // Surface Science. 2009. V. 603. P. 1427-1433.
  32. Aiken J.D., Finke R.G. A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis // J. Mol. Catal. A. 1999. V. 145. P. 1-44.
  33. Liu R. et al. Potential-dependent infrared absorption spectroscopy of adsorbed CO and X-ray photoelectron spectroscopy of arc-melted single-phase Pt, PtRu, PtOs, PtRuOs and Ru Electrodes // J. Phys. Chem. B. 2000. V. 104. P. 3518-3531.
  34. Abild-Pedersen F., Anderson M.P. CO adsorption energies on metals with correction for high coordination adsorption sites ? A density functional study // Surface science. 2007. V. 601. P. 1747-1753.
  35. Mason S.E., Grinberg I., Rappe A.M. First-principles extrapolation method for accurate CO adsorption energies on metal surfaces // Phys. Rev. B. Rapid Communication. 2004. V. 69. P. 161401(4).
  36. Gajdos M., Hafner J. CO adsorption on Cu(111) and Cu(001) surfaces: improving site preference in DFT calculations // Surface Science. 2005. V. 590. P. 117-126.
  37. Stroppa A, et al. CO adsorption on metal surfaces: a hybrid functional study with plane wave basis set // Phys. Rev. B. 2007. V. 76. P. 195440(32)
  38. Abild-Pedersen F., Andersson M.P. CO adsorption energies on metals with correction for high coordination adsorption sites ? a density functional study // Surface Science. 2007. V. 601. №7. P. 1747-1753.
  39. Aiken J.D., Finke R.G. A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis // J. Mol. Catal. A. 1999. V. 145. P. 1-44.
  40. Zheng T. et al. The structure of formate species on Pd(111) calculated by density functional theory and determined using low energy electron diffraction // Surface science. 2005. V. 574. P. 166-174.
  41. Klüner T., Govind N., Wang Y.A., Carter E.A. Prediction of Electronic Excited States of Adsorbates on Metal Surfaces from First Principles // Phys. Rew. Lett. 2001. V. 86. №26. P. 5954-5957. 
  42. Chang C.R. et al. Theoretical study on the leaching of palladium in a CO atmosphere // The Royal Society of Chemistry. Electronic Supplementary Material (ESI) for Catalysis Science & Technology. 2012. V. 1. P. 1-16.
  43. Hirsimaki M., Junell P., Valden M., Eichler A. Adsorption dynamics of CO on Pd(110): energy dependence, structure insensitivity and the role of the surface electronic structure // Chem. Phys. Lett. 2003. V. 370. P. 247-253.
  44. Shan B. et al. First principles-based embedded atom method for PdAu nanoparticles // Phys. Rev. B. 2009. V. 80. №3. P. 035404(7).
  45. Steckel J., Eichler A., Hafner J. CO adsorption on the CO-precovered Pt(111) surface characterized by density-functional theory // Physical Review (B). 2003. V. 68. №8. P. 085416(6).
  46. Gajdos M., Eichler A., Hafner J. CO adsorption on close-packed transition and noble metal surfaces: trends from ab initio calculations // J. of Physics Condensed Matter. 2004. V. 16. №8. P. 1141-1164.
  47. Gil A. et al. Site preference of CO chemisorbed on Pt(111) from density functional calculations // Surface Science. 2003. V. 530. P. 71-86.
  48. Honkala K., Pirila P., Laasonen K. CO and NO adsorbtion and co-adsorption on the Pd(111) surface // Surface Science. 2001. V. 489. P. 72-82.
  49. Liu W., Zhu Y.F., Lian J.S., Jiang Q. Adsorption of CO on Surfaces of 4d and 5d Elements in Group VIII // J. Phys. Chem. C. 2007. V. 111. P. 1005-1009.
  50. Huo C.F. et al. CO dissociation on clean and hydrogen precovered Fe (111) surfaces // J. Catal. 2007. V. 249. P. 174-184.
  51. Jiang D.E., Carter E.A. Adsorption and dissociation of CO on Fe (110) from first principle // Surf. Sci. 2004. V. 570. P. 167-177.
  52. Sorescu D.C., Thompson D.L., Hurley M.M., Chabalowski C.F. First-principles calculations of the adsorption, diffusion, and dissociation of a CO molecule on the Fe (100) surface // Phys. Rev. B. 2002. V. 66. P. 035416(8).
  53. Borthwick D., Fiorin V., Jenkins S.J., King D.A. Facile dissociation of CO on Fe (211): Evidence from microcalorimetry and first-principles theory // Surf. Sci. 2008. V. 602. P. 2325-2332.
  54. Liu Z.P., Hu P. An insight into alkali promotion: A density functional theory study of CO dissociation on K/Rh (111) // J. Am. Chem. Soc. 2001. V. 123. P. 12596-12604.
  55. Feibelman P.J. et al. The CO/Pt(111) puzzle // J. Phys. Chem. B. 2001. V. 105. P. 4018-4025.
  56. Sautet P. et al. Adsorption and energetics of isolated CO molecules on Pd(111) // Surf. Sci. 2000. V. 453. P. 25-31.
  57. Cao D.B., Zhang F.Q., Li Y.W., Jiao H. Density functional theory study of CO adsorption on Fe5C2 (001), -(100) and -(110) surfaces // J. Phys. Chem. B. 2004. V. 108. P. 9094-9104.
  58. Karmazyn A.D., Fiorin V., Jenkins S.J., King D.A. First-principles theory and microcalorimetry of CO adsorption on the {211} surfaces of Pt and Ni // Surface Science. 2003. V. 538. P. 171-183.
  59. McCrea K., Parker J.S., Chen P., Somorjai G. Surface structure sensitivity of high-pressure CO dissociation on Pt(557), Pt(100) and Pt(111) using sum frequency generation surface vibrational spectroscopy // Surface Science. 2001. V. 494. P. 238-250.
  60. Creighan S.C. et al. The adsorption of CO on the stepped Pt{211} surface: a comparison of theory and experiment // Catalysis Letters. 2003. V. 88. №1-2. P. 39-45.
  61. Mavrikakas M., Baumer M., Freund H.-J., Noskov J.K. Structure sensitivity of CO dissociation on Rh surfaces // Catalysis Letters. 2002. V. 81. №3-4. Р. 153-156.
  62. Orita H., Itoh N. Adsorption of CO on Ni(7 5 5) surface: ab initio periodic density functional study // Chemical Physics Letters. 2003. V. 369. P. 305-310.
  63. Zubkov T., Morgan G.A. Jr, Yates J.T. Jr. Spectroscopic detection of CO dissociation on defect sites on Ru(109): implications for Fischer-Tropsch catalytic chemistry // Chemical Physics Letters. 2002. V. 362. P. 181-184.
  64. Zubkov T. et al. The effect of atomic steps on adsorption and desorption of CO on Ru(109) // Surface Science. 2003. V. 526. P. 57-71.
  65. Spendelow J.S. et al. The role of surface defects in CO oxidation, methanol oxidation, and oxygen reduction on Pt(111) // J. of The Electrochemical Society. 2007. V. 154. P. F238-F242.
  66. Herrero E. et al. Effects of the surface mobility on the oxidation of adsorbed CO on platinum electrodes in alkaline media. The role of the adlayer and surface defects // Phys. Chem. Chem. Phys. 2011. V. 13. P. 16762-16771.
  67. Zhang C.J., Hu P.CO Oxidation on Pd(100) and Pd(111): A comparative study of reaction pathways and reactivity at low and medium coverages // J. Am. Chem. Soc. 2001. V. 123. P. 1166-1172 .
  68. Hammer B. The NO+CO reaction catalyzed by flay, stepped and edged Pd surfaces // Journal of Catalysis. 2001. V. 199. P. 171-176.
  69. Liu Z.P., Hu P. General rules for predicting where a catalytic reaction should occur on metal surfaces: A density functional theory study of C-H and C-O bond breaking/making on flat, stepped, and kinked metal surfaces // J. Am. Chem. Soc. 2003. V. 125. P. 1958-1967.
  70. Губин С.П. Наночастицы палладия // Российский химический журнал (Ж. Рос. хим. об-ва им. Д.И. Менделеева). 2006. Т. L. № 4. С. 46-54.
  71. Brechignac C., Houdy P., Lahmani M. Nanomaterials and Nanochemistry. Berlin: Springer. 2007.
  72. Yudanov I.V., Sahnoun R., Neyman K.M., Roosch N. Carbon monoxide adsorption on palladium nanoparticles: A relativistic density functional study // J. Chem. Phys. 2002. V. 117. P. 9887-9896.
  73. Ishikawa Y., Liao M.S., Cabrera C.R. Energetics of H2O dissociation and COadsOHads reaction on a series of Pt-M mixed metal clusters: a relativistic density-functional study // Surface Science. 2002. V. 513. P. 98-110.
  74. Yudanov I.V. et al. CO adsorption on Pd nanoparticles: density functional and vibrational spectroscopy studies // J. Phys. Chem. B. 2003. V. 107. P. 255-264.
  75. Molina L.M., Hammer B. Theoretical study of CO oxidation on Au nanoparticles supported by MgO(100) // Physical Review. B. 2004. V. 69. P. 155424(22).
  76. Barnard A.S., Curtiss L.A. Predicting the shape and structure of face-centered cubic gold nanocrystals smaller than 3 nm // Chem. Phys. Chem. 2006. V. 7. P. 1544-1553.
  77. Xiao L., Tollberg B., Hu X., Wang L. Structural study of gold clusters // The Journal of Chemical Physics. 2006. V. 124. №11. P. 114309(6).
  78. Schalow T. et al. Particle size dependent adsorption and reaction kinetics on reduced and partially oxidized Pd nanoparticles // Phys. Chem. Chem. Phys. 2007. V. 9. P. 1347-1361.
  79. Landman U. et al. Factors in gold nanocatalysis: oxidation of CO in the non-scalable size regime // Top. Catal. 2007. V. 44. P. 145-158.
  80. Zhang H., Tian D., Zhao J. Structural evolution of medium sized Pdn (n=15−25) clusters from density functional theory // J. Chem. Phys. 2008. V. 129. P. 114302(8).
  81. Yudanov I.V., Metzner M., Genest A., Rosch N. Size dependence of adsorption properties of metal nanoparticles: A density functional study on palladium nanoclusters // J. Phys. Chem. C. 2008. V. 112. P. 20269-20275.
  82. Falsig H. et al. Trends in the catalytic CO oxidation activity of nanoparticles // Angew. Chem. Int. Ed. Engl. 2008. V. 47. P. 4835-4839.
  83. Lanzani G., Nasibulin A.G., Laasonen K., Kauppinen E. CO dissociation and CO+O reactions on a nanosized iron cluster // Nano Res. 2009. V. 2. P. 660-670.
  84. Viсes F., Loschen C., Illas F., Neyman K.M. Edge sites as a gate for subsurface carbon in palladium nanoparticles // J. of Catalysis. 2009. V. 266. P. 59-63.
  85. Klacar S., Hellman A., Panas I., Gronbeck H. Oxidation of small silver clusters: A density functional theory study // The Journal of Physical Chemistry C. 2010. V. 114. №29. P.12610-12617.
  86. Wolfarth J.H. et al. Particle size dependent heats of adsorption of CO on supported Pd nanoparticles as measured with a single crystal microcalorimeter // Phys. Rev. B. 2010. V. 81. P. 241416(8).
  87. Hirvi J.T. et al.CO oxidation on PdO surface // J. Chemical Physics. 2010. V. 133. P. 084704(6).
  88. Kaden W.E. et al.Size-dependent oxygen activation efficiency over Pdn /TiO2 (110) for the CO oxidation reaction // J. Am. Chem. Soc. 2010. V. 132. P. 13097-13099.
  89. Seriani N., Mittendorfer F., Kresse G. Carbon in palladium catalysts: A metastable carbide // J. chem. Phys. 2010. V. 132. P. 024711(8).
  90. Kunz S. et al. Temperature dependent CO oxidation mechanisms on size-selected clusters // J. Phys. Chem. C. 2010. V. 114. P. 1651-1654.
  91. Yudanov I.V., Genest A., Rosch N. DFT studies of palladium model catalysts: structure and size effects // J. Cluster Sci. 2011. V. 22. P. 433-448.
  92. Allian A.D. et al.Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters // J. Am. Chem. Soc. 2011. V. 133. P. 4498-4517.
  93. Kleis J. et al. Finite size effects in chemical bonding: from small clusters to solids // Catal. Lett. 2011. V. 141. P. 1067-10741.
  94. Yudanov I.V. et al. Size dependence of the adsorption energy of CO on metal nanoparticles: A DFT search for the minimum value // Nano Lett. 2012. V. 12. P. 2134-2139.
  95. Balmes O. et al.Lundgren E. Reversible formation of a PdCx phase in Pd nanoparticles upon CO and O2 exposure // Phys. Chem. Chem. Phys. 2012. V. 292. P. 167-173.
  96. Федосеев И.В., Гордеев А.С., Марамыгин К.В. Образование алмазных нитей в мягких условиях // Материалы 7-й Междунар. конф. «Углерод: фундаментальные проблемы науки, материаловедение, технология. Конструкционные и функциональные материалы (в том числе наноматериалы) и технологии их производства». Владимир: ВГУ. 2010. С. 394.
  97. Федосеев И.В., Коржавый А.П., Марамыгин К.В. Образование алмазов и других углеродных фаз при деструкции карбонильных кластеров палладия // Журнал неорганической химии. 2013.
  98. Федосеев И.В., Гордеев А.С. Синтез и свойства карбонилхлоридов палладия // Журнал неорганической химии. 2007. Т. 52. № 1. С. 12-14.
  99. Sermon P.A.Macroscopic aggregation in palladium blacks // Platinum Metals Rev. 1974. V. 18. №4. P. 137-141.
  100. Paine M.C. et al.Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients // Rev. Modern Phys. 1992. V. 64. P. 1045-1097.
  101. Patrice E.A., Gonis A., Colombo L. Tight-binding approach to computational materials science. Boston: MIT. 1998.
  102. Tersoff J. Empirical interatomic potential for carbon, with applications to amorphous carbon // Phys. Rev. Lett. 1988. V. 61. P. 2879-2882.
  103. Tersoff J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems // Phys. Rev. B. 1989. V. 39. P. 5565-5568.
  104. Brenner D.W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films // Phys. Rev. B. 1990. V. 42. P. 9458-9471.
  105. Brenner D.W. et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons // J. Phys. Condens. Matter. 2002. V. 14. P. 783-802.
  106. Wang C.Z., Ho K.M. Tight-binding molecular dynamics studies of covalent systems // Adv. Chem. Phys. 1996. V. XCIII. P. 651-702.
  107. Wang C.Z., Ho K.M. Environment dependent tight-binding potential model // Phys. Rew. B. 1996. V. 53. P. 979-987.
  108. Wang C.Z., Ho K.M. Material simulations with tight-binding molecular dynamics // J. Phase Equil. 1997. V. 18. P. 516-527.
  109. Белов Ю.С., Логинова М.Б., Марамыгин К.С., Пономарев А.В. Методология моделирования и анализа образования химических связей в гетерогенных системах // Труды МГТУ. 2013. Т. 604. С. 164-173.
  110. Verlet L. Computer experiments on classical fluids // Phys. Rev. 1968. V. 159. P. 98-103.
  111. Методы компьютерного моделирования / под ред. В.А. Иванова, А.П. Рабиновича, А.Р. Хохлова. М.: Либроком. 2009.
  112. Berendsen H.J.C. et al. Molecular dynamics with coupling to an external bath // J. Chem. Phys. 1984. V. 81. P. 3684-3690.
  113. Xu C.H., Wang C.Z., Chan C.T., Ho K.M. A transferable tight-binding potential for carbon // J. Phys.: Condens. Matter. 1992. V. 4. P. 6047-6054.
  114. Li X.P., Nunes R.W., Vanderbilt D. Density-matrix electronic-structure method with linear system-size scaling // Phys. Rev. B. 1993. V. 47. P. 10891-10894.