350 rub
Journal Science Intensive Technologies №7 for 2013 г.
Article in number:
Simulation diamond whiskers synthesis processes under soft conditions
Authors:
A.P. Korzhavyi, B.M. Loginov, M.B. Loginova, K.V. Maramygin, I.V. Fedosee
Abstract:
The brief review of the literature data results on experimental and theoretical study of adsorption of carbon dioxide on the surface of d-metals has been done. The empirical model of diamond whiskers (DW) synthesis was developed. The model based on author-s experimental results, concerning with the features of DW synthesis due to destruction of carbonyl compounds of palladium, which were produced due to hydrochloric acid solution of dichloride palladium carbon monoxide processing. By computer simulation, in the semi-classical molecular dynamic tight-binding approximation (MDTB), an analysis of certain aspects of the DW synthesis has been carried out. The regularities of the formative pressure influence on the structural features of the synthesized crystals were determined. It was shown that MDSS methods can serve as the basis for an effective search of optimal synthesis conditions for ideal crystal-s structure.
Pages: 4-19
References

  1. Cremer D. Density functional theory: coverage of dynamic and non-dynamic electron correlation effects // Molecular Physics. 2001. V. 99. №23. P. 1899-1940.
  2. Smith G.W., Carter E.A. Interaction of NO and CO with Pd and Pt atoms // J. Phys. Chem. 1991. V. 95. P. 2327-2339.
  3. Braun J., Kostov K.L., Witte G., Wöll C. CO overlayers on Ru(0001) studied by helium atom scattering: Structure, dynamics, and the influence of coadsorbed H and O // J. Chem. Phys. 1997. V. 106. P. 8262-8273.
  4. Liu Z.P., Hu P. A new insight into Fischer-Tropsch synthesis // J. Am. Chem. Soc. 2002. V. 124. P. 11568-11669.
  5. Nagata T., Pohl M., Weiner H., Finke R.G. Polyoxoanion-supported organometallic complexes: Carbonyls of rhenium(I), iridium(I), and rhodium(I) that are soluble analogs of solid-oxide-supported M(CO)+n and that exhibit novel M(CO)+n mobility // Inorg. Chem. 1997. V. 36. P. 1366-1374.
  6. Held G., Schuler J., Sklarek W., Steinrück H.-P. Determination of adsorption sites of pure and coadsorbed CO on Ni(111) by high resolution X-ray photoelectron spectroscopy // Surface Science. 1998. V. 398. №1-2. P. 154-171.
  7. Michaelis M., Henglein A. Reduction of Pd(II) in aqueous solution-stabilization and reactions of an intermediate cluster and Pd colloid formation // J. Phys. Chem. 1992. V. 96. P. 4719-4724.
  8. Ozkar S., Finke R. Transition-metal nanocluster stabilization fundamental studies: hydrogen phosphate as a simple, effective, readily available, robust, and previously unappreciated stabilizer for well-formed, isolable, and redissolvable Ir(0) and other transition- metal nanoclusters // Langmuir. 2003. V. 19. P. 6247-6260.
  9. Bunluesin T., Putna E., Gorte R. A comparison of CO oxidation on ceria supported Pt, Pd and Rh // Catalysis Letters. 1996. V. 41. P. 1-5.
  10. Wong Y.T., Hoffmann R. Chemisorption of carbon monoxide on three metal surfaces: Ni(111), Pd(111) and Pt(111). A comparative study // J. of Physical Chemistry. 1991. V. 95. №2. P. 859-867.
  11. Steininger H., Lehwald S., Ibach H. On the adsorption of CO on Pt(111) // Surface Science. 1982. V. 123. P. 264-282.
  12. Su X.C., Cremer P.S., Shen Y.R., Somorjai G.A. High-pressure CO oxidation on Pt(111) monitored with infrared-visible sum frequency generation (SFG) // J. Am. Chem. Soc. 1997. V. 119. P. 3994-3999.
  13. Szanyi J., Goodman D.W. CO oxidation on palladium - a combined kinetic-infrared reflection-absorption spectroscopic study of Pd(100) // J. Phys. Chem. 1994. V. 98. P. 2972-2978.
  14. Berlowitz P.J., Peden C.H.F., Goodman D.W. Kinetics of CO oxidation on single-crystal Pd, Pt and Ir. // J. Phys. Chem. 1988. V. 92. P. 5213-5221.
  15. Klotzer B., Unterberger W., Hayek K. Adsorption and hydrogenation of CO on Pd(111) and Rh(111) modified by subsurface vanadium // Surface Science. 2003. V. 532-535. P. 142-147.
  16. Ali T., Klotzer B., Walker A.V., King D.A. A molecular beam study of nonlinearity in the CO-induced surface restructuring of Ir{100} // J. Chem. Phys. 1998. V. 109. №24. P. 10996-11009.
  17. Pfnur H. et al. High resolution vibration spectroscopy of CO on Ru(001): The importance of lateral interactions // Surface Science. 1980. V. 93. №2-3. P. 431-452.
  18. Hieu N.V., Craig J.H. Jr. TDS and ESD study of CO on palladium // Surface Science. 1984. V. 145. №2-3. P. L493-L500.
  19. Wang J., Wang Y., Jacobi K. The molecular adsorption of CO on the Ru(1120) surface // Surface Science. 2001. V. 482-485. P. 153-159.
  20. Love J.G., Haq S., King D.A. The interaction between H and CO coadsorbed on Ni{110} // J. Chem. Phys. 1992. V. 97. P. 8789-8797.
  21. Krenn G., Bako I., Schennach R. CO adsorption and CO and O coadsorption on Rh(111) studied by reflection absorption infrared spectroscopy and density functional theory // J. Chem. Phys. 2006. V. 124. P. 144703-144724.
  22. Craig J.H. Jr. Adsorption of H2 and CO on rhodium // Application of Surface Science. 1984. V. 17. P. 379-389.
  23. Hofmann P., Bare S.R., Richardson N.V., King D.A. Orientation of chemisorbed speciesfrom orthogonal-plane arups: Tilted CO on Pt{110} and upright CO on Pt{111} // Solid State Communications. 1982. V. 42. №9. P. 645-651.
  24. Fielicke A. et al. Vibrational spectroscopy of CO in gas-phase rhodium cluster-CO complexes // J. Am. Chem. Soc. 2003. V. 125. P. 11184-11185.
  25. Fielicke A. et al. Size and charge effects on the binding of CO to small isolated rhodium clusters // J. Phys. Chem. B. 2004. V. 108. P. 14591-14598.
  26. Fielicke A. et al. Size and charge effects on the binding of CO to late transition metal clusters // J. Chem. Phys. 2006. V. 124. P. 194305-194312.
  27. Fielicke A. et al. Gold cluster carbonyls: Vibrational spectroscopy of the anions and the effects of cluster size, charge, and coverage on the CO stretching frequency // J. Phys. Chem. B. 2005. V. 109. P. 23935-23940.
  28. Fielicke A. et al. Gold cluster carbonyls: Saturated adsorption of CO on gold cluster cations, vibrational spectroscopy, and implications for their structures // J. Am. Chem. Soc. 2005. V. 127. P. 8416-8423.
  29. Fielicke A. et al. Direct observation of size dependent activation of NO on gold clusters // Phys. Chem. Chem. Phys. 2005. V. 7. P. 3906-3909.
  30. Gruene P., Fielicke A., Meijer G., Rayner D.M. The adsorption of CO on group 10 (Ni, Pd, Pt) transition-metal clusters // Phys. Chem. Chem. Phys. 2008. V. 10. P. 6144-6149.
  31. Fielicke A., Gruene P., Meijer G., Rayner D.M. The adsorption of CO on transition metal clusters: A case study of cluster surface chemistry // Surface Science. 2009. V. 603. P. 1427-1433.
  32. Aiken J.D., Finke R.G. A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis // J. Mol. Catal. A. 1999. V. 145. P. 1-44.
  33. Liu R. et al. Potential-dependent infrared absorption spectroscopy of adsorbed CO and X-ray photoelectron spectroscopy of arc-melted single-phase Pt, PtRu, PtOs, PtRuOs and Ru Electrodes // J. Phys. Chem. B. 2000. V. 104. P. 3518-3531.
  34. Abild-Pedersen F., Anderson M.P. CO adsorption energies on metals with correction for high coordination adsorption sites - A density functional study // Surface science. 2007. V. 601. P. 1747-1753.
  35. Mason S.E., Grinberg I., Rappe A.M. First-principles extrapolation method for accurate CO adsorption energies on metal surfaces // Phys. Rev. B. Rapid Communication. 2004. V. 69. P. 161401(4).
  36. Gajdos M., Hafner J. CO adsorption on Cu(111) and Cu(001) surfaces: improving site preference in DFT calculations // Surface Science. 2005. V. 590. P. 117-126.
  37. Stroppa A, et al. CO adsorption on metal surfaces: a hybrid functional study with plane wave basis set // Phys. Rev. B. 2007. V. 76. P. 195440(32)
  38. Abild-Pedersen F., Andersson M.P. CO adsorption energies on metals with correction for high coordination adsorption sites - a density functional study // Surface Science. 2007. V. 601. №7. P. 1747-1753.
  39. Aiken J.D., Finke R.G. A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis // J. Mol. Catal. A. 1999. V. 145. P. 1-44.
  40. Zheng T. et al. The structure of formate species on Pd(111) calculated by density functional theory and determined using low energy electron diffraction // Surface science. 2005. V. 574. P. 166-174.
  41. Klüner T., Govind N., Wang Y.A., Carter E.A. Prediction of Electronic Excited States of Adsorbates on Metal Surfaces from First Principles // Phys. Rew. Lett. 2001. V. 86. №26. P. 5954-5957. 
  42. Chang C.R. et al. Theoretical study on the leaching of palladium in a CO atmosphere // The Royal Society of Chemistry. Electronic Supplementary Material (ESI) for Catalysis Science & Technology. 2012. V. 1. P. 1-16.
  43. Hirsimaki M., Junell P., Valden M., Eichler A. Adsorption dynamics of CO on Pd(110): energy dependence, structure insensitivity and the role of the surface electronic structure // Chem. Phys. Lett. 2003. V. 370. P. 247-253.
  44. Shan B. et al. First principles-based embedded atom method for PdAu nanoparticles // Phys. Rev. B. 2009. V. 80. №3. P. 035404(7).
  45. Steckel J., Eichler A., Hafner J. CO adsorption on the CO-precovered Pt(111) surface characterized by density-functional theory // Physical Review (B). 2003. V. 68. №8. P. 085416(6).
  46. Gajdos M., Eichler A., Hafner J. CO adsorption on close-packed transition and noble metal surfaces: trends from ab initio calculations // J. of Physics Condensed Matter. 2004. V. 16. №8. P. 1141-1164.
  47. Gil A. et al. Site preference of CO chemisorbed on Pt(111) from density functional calculations // Surface Science. 2003. V. 530. P. 71-86.
  48. Honkala K., Pirila P., Laasonen K. CO and NO adsorbtion and co-adsorption on the Pd(111) surface // Surface Science. 2001. V. 489. P. 72-82.
  49. Liu W., Zhu Y.F., Lian J.S., Jiang Q. Adsorption of CO on Surfaces of 4d and 5d Elements in Group VIII // J. Phys. Chem. C. 2007. V. 111. P. 1005-1009.
  50. Huo C.F. et al. CO dissociation on clean and hydrogen precovered Fe (111) surfaces // J. Catal. 2007. V. 249. P. 174-184.
  51. Jiang D.E., Carter E.A. Adsorption and dissociation of CO on Fe (110) from first principle // Surf. Sci. 2004. V. 570. P. 167-177.
  52. Sorescu D.C., Thompson D.L., Hurley M.M., Chabalowski C.F. First-principles calculations of the adsorption, diffusion, and dissociation of a CO molecule on the Fe (100) surface // Phys. Rev. B. 2002. V. 66. P. 035416(8).
  53. Borthwick D., Fiorin V., Jenkins S.J., King D.A. Facile dissociation of CO on Fe (211): Evidence from microcalorimetry and first-principles theory // Surf. Sci. 2008. V. 602. P. 2325-2332.
  54. Liu Z.P., Hu P. An insight into alkali promotion: A density functional theory study of CO dissociation on K/Rh (111) // J. Am. Chem. Soc. 2001. V. 123. P. 12596-12604.
  55. Feibelman P.J. et al. The CO/Pt(111) puzzle // J. Phys. Chem. B. 2001. V. 105. P. 4018-4025.
  56. Sautet P. et al. Adsorption and energetics of isolated CO molecules on Pd(111) // Surf. Sci. 2000. V. 453. P. 25-31.
  57. Cao D.B., Zhang F.Q., Li Y.W., Jiao H. Density functional theory study of CO adsorption on Fe5C2 (001), -(100) and -(110) surfaces // J. Phys. Chem. B. 2004. V. 108. P. 9094-9104.
  58. Karmazyn A.D., Fiorin V., Jenkins S.J., King D.A. First-principles theory and microcalorimetry of CO adsorption on the {211} surfaces of Pt and Ni // Surface Science. 2003. V. 538. P. 171-183.
  59. McCrea K., Parker J.S., Chen P., Somorjai G. Surface structure sensitivity of high-pressure CO dissociation on Pt(557), Pt(100) and Pt(111) using sum frequency generation surface vibrational spectroscopy // Surface Science. 2001. V. 494. P. 238-250.
  60. Creighan S.C. et al. The adsorption of CO on the stepped Pt{211} surface: a comparison of theory and experiment // Catalysis Letters. 2003. V. 88. №1-2. P. 39-45.
  61. Mavrikakas M., Baumer M., Freund H.-J., Noskov J.K. Structure sensitivity of CO dissociation on Rh surfaces // Catalysis Letters. 2002. V. 81. №3-4. R. 153-156.
  62. Orita H., Itoh N. Adsorption of CO on Ni(7 5 5) surface: ab initio periodic density functional study // Chemical Physics Letters. 2003. V. 369. P. 305-310.
  63. Zubkov T., Morgan G.A. Jr, Yates J.T. Jr. Spectroscopic detection of CO dissociation on defect sites on Ru(109): implications for Fischer-Tropsch catalytic chemistry // Chemical Physics Letters. 2002. V. 362. P. 181-184.
  64. Zubkov T. et al. The effect of atomic steps on adsorption and desorption of CO on Ru(109) // Surface Science. 2003. V. 526. P. 57-71.
  65. Spendelow J.S. et al. The role of surface defects in CO oxidation, methanol oxidation, and oxygen reduction on Pt(111) // J. of The Electrochemical Society. 2007. V. 154. P. F238-F242.
  66. Herrero E. et al. Effects of the surface mobility on the oxidation of adsorbed CO on platinum electrodes in alkaline media. The role of the adlayer and surface defects // Phys. Chem. Chem. Phys. 2011. V. 13. P. 16762-16771.
  67. Zhang C.J., Hu P. CO Oxidation on Pd(100) and Pd(111): A comparative study of reaction pathways and reactivity at low and medium coverages // J. Am. Chem. Soc. 2001. V. 123. P. 1166-1172 .
  68. Hammer B. The NO+CO reaction catalyzed by flay, stepped and edged Pd surfaces // Journal of Catalysis. 2001. V. 199. P. 171-176.
  69. Liu Z.P., Hu P. General rules for predicting where a catalytic reaction should occur on metal surfaces: A density functional theory study of C-H and C-O bond breaking/making on flat, stepped, and kinked metal surfaces // J. Am. Chem. Soc. 2003. V. 125. P. 1958-1967.
  70. Gubin S.P. Nanochasticzy' palladiya // Rossijskij ximicheskij zhurnal (Zh. Ros. xim. ob-va im. D.I. Mendeleeva). 2006. T. L. № 4. S. 46-54.
  71. Brechignac C., Houdy P., Lahmani M. Nanomaterials and Nanochemistry. Berlin: Springer. 2007.
  72. Yudanov I.V., Sahnoun R., Neyman K.M., Roosch N. Carbon monoxide adsorption on palladium nanoparticles: A relativistic density functional study // J. Chem. Phys. 2002. V. 117. P. 9887-9896.
  73. Ishikawa Y., Liao M.S., Cabrera C.R. Energetics of H2O dissociation and COads OHads reaction on a series of Pt-M mixed metal clusters: a relativistic density-functional study // Surface Science. 2002. V. 513. P. 98-110.
  74. Yudanov I.V. et al. CO adsorption on Pd nanoparticles: density functional and vibrational spectroscopy studies // J. Phys. Chem. B. 2003. V. 107. P. 255-264.
  75. Molina L.M., Hammer B. Theoretical study of CO oxidation on Au nanoparticles supported by MgO(100) // Physical Review. B. 2004. V. 69. P. 155424(22).
  76. Barnard A.S., Curtiss L.A. Predicting the shape and structure of face-centered cubic gold nanocrystals smaller than 3 nm // Chem. Phys. Chem. 2006. V. 7. P. 1544-1553.
  77. Xiao L., Tollberg B., Hu X., Wang L. Structural study of gold clusters // The Journal of Chemical Physics. 2006. V. 124. №11. P. 114309(6).
  78. Schalow T. et al. Particle size dependent adsorption and reaction kinetics on reduced and partially oxidized Pd nanoparticles // Phys. Chem. Chem. Phys. 2007. V. 9. P. 1347-1361.
  79. Landman U. et al. Factors in gold nanocatalysis: oxidation of CO in the non-scalable size regime // Top. Catal. 2007. V. 44. P. 145-158.
  80. Zhang H., Tian D., Zhao J. Structural evolution of medium sized Pdn (n=15−25) clusters from density functional theory // J. Chem. Phys. 2008. V. 129. P. 114302(8).
  81. Yudanov I.V., Metzner M., Genest A., Rosch N. Size dependence of adsorption properties of metal nanoparticles: A density functional study on palladium nanoclusters // J. Phys. Chem. C. 2008. V. 112. P. 20269-20275.
  82. Falsig H. et al. Trends in the catalytic CO oxidation activity of nanoparticles // Angew. Chem. Int. Ed. Engl. 2008. V. 47. P. 4835-4839.
  83. Lanzani G., Nasibulin A.G., Laasonen K., Kauppinen E. CO dissociation and CO+O reactions on a nanosized iron cluster // Nano Res. 2009. V. 2. P. 660-670.
  84. Vises F., Loschen C., Illas F., Neyman K.M. Edge sites as a gate for subsurface carbon in palladium nanoparticles // J. of Catalysis. 2009. V. 266. P. 59-63.
  85. Klacar S., Hellman A., Panas I., Gronbeck H. Oxidation of small silver clusters: A density functional theory study // The Journal of Physical Chemistry C. 2010. V. 114. №29. P.12610-12617.
  86. Wolfarth J.H. et al. Particle size dependent heats of adsorption of CO on supported Pd nanoparticles as measured with a single crystal microcalorimeter // Phys. Rev. B. 2010. V. 81. P. 241416(8).
  87. Hirvi J.T. et al. CO oxidation on PdO surface // J. Chemical Physics. 2010. V. 133. P. 084704(6).
  88. Kaden W.E. et al. Size-dependent oxygen activation efficiency over Pdn /TiO2 (110) for the CO oxidation reaction // J. Am. Chem. Soc. 2010. V. 132. P. 13097-13099.
  89. Seriani N., Mittendorfer F., Kresse G. Carbon in palladium catalysts: A metastable carbide // J. chem. Phys. 2010. V. 132. P. 024711(8).
  90. Kunz S. et al. Temperature dependent CO oxidation mechanisms on size-selected clusters // J. Phys. Chem. C. 2010. V. 114. P. 1651-1654.
  91. Yudanov I.V., Genest A., Rosch N. DFT studies of palladium model catalysts: structure and size effects // J. Cluster Sci. 2011. V. 22. P. 433-448.
  92. Allian A.D. et al. Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters // J. Am. Chem. Soc. 2011. V. 133. P. 4498-4517.
  93. Kleis J. et al. Finite size effects in chemical bonding: from small clusters to solids // Catal. Lett. 2011. V. 141. P. 1067-10741.
  94. Yudanov I.V. et al. Size dependence of the adsorption energy of CO on metal nanoparticles: A DFT search for the minimum value // Nano Lett. 2012. V. 12. P. 2134-2139.
  95. Balmes O. et al. Lundgren E. Reversible formation of a PdCx phase in Pd nanoparticles upon CO and O2 exposure // Phys. Chem. Chem. Phys. 2012. V. 292. P. 167-173.
  96. Fedoseev I.V., Gordeev A.S., Maramy'gin K.V. Obrazovanie almazny'x nitej v myagkix usloviyax // Materialy' 7-j Mezhdunar. konf. «Uglerod: fundamental'ny'e problemy' nauki, materialovedenie, texnologiya. Konstrukczionny'e i funkczional'ny'e materialy' (v tom chisle nanomaterialy') i texnologii ix proizvodstva». Vladimir: VGU. 2010. S. 394.
  97. Fedoseev I.V., Korzhavy'j A.P., Maramy'gin K.V. Obrazovanie almazov i drugix uglerodny'x faz pri destrukczii karbonil'ny'x klasterov palladiya // Zhurnal neorganicheskoj ximii. 2013.
  98. Fedoseev I.V., Gordeev A.S. Sintez i svojstva karbonilxloridov palladiya // Zhurnal neorganicheskoj ximii. 2007. T. 52. № 1. S. 12-14.
  99. Sermon P.A. Macroscopic aggregation in palladium blacks // Platinum Metals Rev. 1974. V. 18. №4. P. 137-141.
  100. Paine M.C. et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients // Rev. Modern Phys. 1992. V. 64. P. 1045-1097.
  101. Patrice E.A., Gonis A., Colombo L. Tight-binding approach to computational materials science. Boston: MIT. 1998.
  102. Tersoff J. Empirical interatomic potential for carbon, with applications to amorphous carbon // Phys. Rev. Lett. 1988. V. 61. P. 2879-2882.
  103. Tersoff J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems // Phys. Rev. B. 1989. V. 39. P. 5565-5568.
  104. Brenner D.W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films // Phys. Rev. B. 1990. V. 42. P. 9458-9471.
  105. Brenner D.W. et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons // J. Phys. Condens. Matter. 2002. V. 14. P. 783-802.
  106. Wang C.Z., Ho K.M. Tight-binding molecular dynamics studies of covalent systems // Adv. Chem. Phys. 1996. V. XCIII. P. 651-702.
  107. Wang C.Z., Ho K.M. Environment dependent tight-binding potential model // Phys. Rew. B. 1996. V. 53. P. 979-987.
  108. Wang C.Z., Ho K.M. Material simulations with tight-binding molecular dynamics // J. Phase Equil. 1997. V. 18. P. 516-527.
  109. Belov Ju.S., Loginova M.B., Maramy'gin K.S., Ponomarev A.V. Metodologiya modelirovaniya i analiza obrazovaniya ximicheskix svyazej v geterogenny'x sistemax // Trudy' MGTU. 2013. T. 604. S. 164-173.
  110. Verlet L. Computer experiments on classical fluids // Phys. Rev. 1968. V. 159. P. 98-103.
  111. Metody' komp'yuternogo modelirovaniya / pod red. V.A. Ivanova, A.P. Rabinovicha, A.R. Xoxlova. M.: Librokom. 2009.
  112. Berendsen H.J.C. et al. Molecular dynamics with coupling to an external bath // J. Chem. Phys. 1984. V. 81. P. 3684-3690.
  113. Xu C.H., Wang C.Z., Chan C.T., Ho K.M. A transferable tight-binding potential for carbon // J. Phys.: Condens. Matter. 1992. V. 4. P. 6047-6054.
  114. Li X.P., Nunes R.W., Vanderbilt D. Density-matrix electronic-structure method with linear system-size scaling // Phys. Rev. B. 1993. V. 47. P. 10891-10894.