
Шань Гуанбао1 Чжэн Яньвэнь2, Цао Хуэйхуа3, В.И. Гончаренко4, А.А. Бахтин5
1-3 Сианьский университет электронной науки и технологий (Сиань, Шэньси, Китай)
4 Московский авиационный институт (национальный исследовательский университет) (Москва, Россия)
5 Национальный исследовательский университет «Московский институт электронной техники» (Москва, Россия)
1 gbshan@xidian.edu.cn; 2 zhengyanwen0503@163.com; 4 vladimirgonch@mail.ru; 5 bah@miee.ru
Постановка проблемы. Расширение области применения радиочастотных микросистем (SWaP-C) предъявляет строгие требования к их массогабаритным характеристикам и стоимости, которые традиционные радиочастотные системы на базе интегральных схем с использованием технологий печатных плат (PCB) не могут удовлетворить. Поэтому необходимы дополнительные исследования технологии реконфигурируемых радиочастотных микросистем для возможности их реконфигурации по функциям, характеристикам, габаритным размерам, массе и стоимости, не увеличивая или минимально увеличивая аппаратное обеспечение.
Цель. Представить технологию реконфигурации радиочастотных систем, включая аппаратные и программные методы реконфигурации.
Результаты. Приведены аппаратные и программные аспекты реконфигурируемых радиочастотных систем. Рассмотрены направления аппаратной реализации реконфигурируемых антенн и устройств, а также топологии сетей. Описана программная реализация программно-определяемого и интеллектуального радио, стратегий реконфигурации и исследований пространства. Даны прогнозы развития реконфигурируемых технологий для радиочастотных систем
Практическая значимость. Обобщение основных технологий реконструкции радиочастотных микросистем, предоставление разработчикам некоторых критериев выбора технологий реконструкции и предоставление новым исследователям контекста разработки технологий реконструкции.
Шань Гуанбао, Чжэн Яньвэнь, Цао Хуэйхуа, Гончаренко В.И., Бахтин А.А. Состояние и перспективы реконфигурируемых технологий для радиочастотных систем // Радиотехника. 2025. Т. 89. № 2. С. 167−182. DOI: https://doi.org/10.18127/j00338486-202502-21
- Paek J.-S. et al. Efficient RF-PA Two-Chip Supply Modulator Architecture for 4G LTE and 5G NR Dual-Connectivity RF Front End // IEEE Journal of Solid-State Circuits. 2022. V. 57. № 4. P. 1075-1089. DOI: 10.1109/JSSC.2022.3144771.
- Attaran A., Handler W.B., Chronik B.A. RF Injection Network Development for Testing of Active Implantable Medical Devices Exposed to RF Fields in 1.5 T MRI Systems // IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology. 2020. V. 4. № 1. P. 2-9. DOI: 10.1109/JERM.2019.2909386.
- Ma L., Zhang Z., Lu J., Gu C., Mao J. A Miniaturized Millimeter-Wave Radar Sensing Microsystem with High Isolation Full-Duplex Microstrip Patch Antenna // IEEE Microwave and Wireless Technology Letters. 2023. V. 33. № 10. P. 1509-1512. DOI: 10.1109/LMWT.2023.3308596.
- Yang X. et al. Low-Loss Heterogeneous Integrations with High Output Power Radar Applications at W-Band // IEEE Journal of Solid-State Circuits. 2022. V. 57. № 6. P. 1563-1577. DOI: 10.1109/JSSC.2021.3106444.
- Kim Y.-S. et al. Phased Array Weather Radar Architectures for Doppler Estimation wITH Space-Time Processing // IEEE Transactions on Radar Systems. 2024. V. 2. P. 725-738. DOI: 10.1109/TRS.2024.3444785.
- Huang C.-M., Wang S.-H., Wu T.-Y., Huang M.-C., Wu R.-B. Systematic Design for Mitigation of RF Desense by Interleaved Power Line in Two-Layer PCB // IEEE Transactions on Components, Packaging and Manufacturing Technology. 2021. V. 11. № 5. P. 859-864. DOI: 10.1109/TCPMT.2021.3063321.
- Chiang C.-W., Wu C.-T. M., Liu N.-C., Liang C.-J., Kuan Y.-C. A Cost-Effective W-Band Antenna-in-Package Using IPD and PCB Technologies // IEEE Transactions on Components, Packaging and Manufacturing Technology. 2022. V. 12. № 5. P. 822-827. DOI: 10.1109/TCPMT.2022.3170499.
- Dao T., Kearns A., Reyes Paredes D., Hueber G. Wideband High-Gain Stacked Patch Antenna Array on Standard PCB for D-Band 6G Communications // IEEE Antennas and Wireless Propagation Letters. 2024. V. 23. № 2. P. 478-482. DOI: 10.1109/LAWP.2023.3325414.
- Wang D.-M., Hu J.-G., Wu J. A Fully Integrated Low-Cost HF Multistandard RFID Reader SoC and Module for IoT Applications // IEEE Internet of Things Journal. 2022. V. 9. № 19. P. 19201-19213. DOI: 10.1109/JIOT.2022.3164919.
- Herrault F., Wong J.C., Tang Y., Tai H.Y., Ramos I. Heterogeneously Integrated RF Circuits Using Highly Scaled off-the-Shelf GaN HEMT Chiplets // IEEE Microwave and Wireless Components Letters. 2020. V. 30. № 11. P. 1061-1064. DOI: 10.1109/LMWC.2020.3025126.
- Das Sharma D., Pasdast G., Qian Z., Aygun K. Universal Chiplet Interconnect Express (UCIe): An Open Industry Standard for Innovations with Chiplets at Package Level // IEEE Transactions on Components, Packaging and Manufacturing Technology. 2022. V. 12. № 9. P. 1423-1431. DOI: 10.1109/TCPMT.2022.3207195.
- Herrault F. et al. Metal-Embedded Chiplet Assembly for Microwave Integrated Circuits // IEEE Transactions on Components, Packaging and Manufacturing Technology. 2020. V. 10. № 9. P. 1579-1582. DOI: 10.1109/TCPMT.2020.3012505.
- Shi Y., Shao D., Feng W., Zhang J., Zhou M. Silicon Interposer Package for MMIC Heterogeneous Integration Based on Gold/Solder Ball Flip-Chip Technique // IEEE Transactions on Components, Packaging and Manufacturing Technology. 2019. V. 9. № 8. P. 1659-1662. DOI: 10.1109/TCPMT.2019.2917292.
- Herrault F., Wong J.C., Tang Y., Tai H.Y., Ramos I. Heterogeneously Integrated RF Circuits Using Highly Scaled off-the-Shelf GaN HEMT Chiplets // IEEE Microwave and Wireless Components Letters. 2020. V. 30. № 11. P. 1061-1064. DOI: 10.1109/LMWC.2020.3025126.
- Zhai C., Liu H.-Y., Cheng K.-K.M. Single-Chip CMOS Reconfigurable Dual-Band Tri-Mode High-Efficiency RF Amplifier Design // IEEE Transactions on Circuits and Systems II: Express Briefs. 2021. V. 68. № 3. P. 868-872. DOI: 10.1109/TCSII.2020.3022908.
- Rao J. et al. A Novel Reconfigurable Intelligent Surface for Wide-Angle Passive Beamforming // IEEE Transactions on Microwave Theory and Techniques. 2022. V. 70. № 12. P. 5427-5439. DOI: 10.1109/TMTT.2022.3195224.
- Lyke J.C., Christodoulou C.G., Vera G.A., Edwards A.H. An Introduction to Reconfigurable Systems // Proceedings of the IEEE. 2015. V. 103. № 3. P. 291-317. DOI: 10.1109/JPROC.2015.2397832.
- Ali A.M.A. et al. A 14-bit 125 MS/s IF/RF Sampling Pipelined ADC with 100 dB SFDR and 50 fs Jitter // IEEE Journal of Solid-State Circuits. 2006. V. 41. № 8. P. 1846-1855. DOI: 10.1109/JSSC.2006.875291.
- Henthorn S., O’Farrell T., Anbiyaei M.R., Ford K.L. Concurrent Multiband Direct RF Sampling Receivers // IEEE Transactions on Wireless Communications. 2023. V. 22. № 1. P. 550-562. DOI: 10.1109/TWC.2022.3196279.
- He Z. et al. A Hardware Efficient Implementation of a Digital Baseband Receiver for High-Capacity Millimeter-Wave Radios // IEEE Transactions on Microwave Theory and Techniques. 2015. V. 63, № 5. P. 1683-1692. DOI: 10.1109/TMTT.2015.2417541.
- Fulton C., Yeary M., Thompson D., Lake J., Mitchell A. Digital Phased Arrays: Challenges and Opportunities // Proceedings of the IEEE. 2016. V. 104. № 3. P. 487-503. DOI: 10.1109/JPROC.2015.2501804.
- Watanabe A.O., Ali M., Sayeed S.Y.B., Tummala R.R., Pulugurtha M.R. A Review of 5G Front-End Systems Package Integration // IEEE Transactions on Components, Packaging and Manufacturing Technology. 2021. V. 11. № 1. P. 118-133. DOI: 10.1109/TCPMT.2020.3041412.
- Lau J.H. et al. Fan-Out Wafer-Level Packaging for Heterogeneous Integration // IEEE Transactions on Components, Packaging and Manufacturing Technology. 2018. V. 8. № 9. P. 1544-1560. DOI: 10.1109/TCPMT.2018.2848649.
- Sun M., Guan Lim T., Wee Ho D.S., Wu J., Chai T.C., Ma Y. 77-GHz FOWLP MIMO AiP for Compact High-Resolution Radar with Horizontally and Vertically Long- and Medium-Range Sensing // IEEE Transactions on Components, Packaging and Manufacturing Technology. 2024. V. 14. № 4. P. 537-546. DOI: 10.1109/TCPMT.2024.3383463.
- Haider N., Caratelli D., Yarovoy A.G. Frequency Reconfiguration of a Dual-Band Phased Array Antenna with Variable-Impedance Matching // IEEE Transactions on Antennas and Propagation. 2015. V. 63. № 8. P. 3477-3485. DOI: 10.1109/TAP.2015.2441120.
- Wang S.-T., Zhu L., Deng H. Design Approach for Pattern-Reconfigurable Patch Antenna without Extra Feeding Networks // IEEE Transactions on Antennas and Propagation. 2023. V. 71. № 2. P. 1925-1930. DOI: 10.1109/TAP.2022.3229179.
- Li M., Zhang Z., Tang M.-C., Zhu L., Liu N.-W. Bandwidth Enhancement and Size Reduction of a Low-Profile Polarization-Re-configurable Antenna by Utilizing Multiple Resonances // IEEE Transactions on Antennas and Propagation. 2022. V. 70. № 2.
P. 1517-1522. DOI: 10.1109/TAP.2021.3111309. - Liu X., Zhang W., Hao D., Liu Y. Cost-Effective Broadband and Compact Patch Antenna Based on Ball Grid Array Packaging for 5G NR FR2 Band Applications // IEEE Transactions on Circuits and Systems II: Express Briefs. 2023. V. 70. № 6. P. 1921-1925. DOI: 10.1109/TCSII.2022.3233381.
- Jin C., Sekhar V. N., Bao X., Chen B., Zheng B., Li R. Antenna-in-Package Design Based on Wafer-Level Packaging with Through Silicon via Technology // IEEE Transactions on Components, Packaging and Manufacturing Technology. 2013. V. 3. № 9. P. 1498-1505. DOI: 10.1109/TCPMT.2013.2261855.
- Fang Z. et al. Absorptive Filtering Packaging Antenna Design Based on Through-Glass Vias // IEEE Transactions on Components, Packaging and Manufacturing Technology. 2023. V. 13. № 11. P. 1817-1824. DOI: 10.1109/TCPMT.2023.3318434.
- Wainstein N., Adam G., Yalon E., Kvatinsky S. Radiofrequency Switches Based on Emerging Resistive Memory Technologies – A Survey // Proceedings of the IEEE. 2021. V. 109. № 1. P. 77-95. DOI: 10.1109/JPROC.2020.3011953.
- Singh T., Mansour R.R. Ultra-Compact Phase-Change GeTe-Based Scalable mmWave Latching Crossbar Switch Matrices // IEEE Transactions on Microwave Theory and Techniques. 2022. V. 70. № 1. P. 938-949. DOI: 10.1109/TMTT.2021.3128589.
- Zhou W., Sheng W., Yan B. A Single-Chip Wafer-Level Packaged SR-Crossbar RF MEMS Switch Matrix // IEEE Electron Device Letters. 2024. V. 45. № 7. P. 1309-1312. DOI: 10.1109/LED.2024.3403550.
- Hill C., Levy C.S., AlShammary H., Hamza A., Buckwalter J.F. RF Watt-Level Low-Insertion-Loss High-Bandwidth SOI CMOS Switches // IEEE Transactions on Microwave Theory and Techniques. 2018. V. 66. № 12. P. 5724-5736. DOI: 10.1109/TMTT.2018.2876825.
- Flewelling G.M. Broadband Reconfigurable Transceivers in SiGe // 2020 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS). Monterey. CA. USA. 2020. P. 1-4. DOI: 10.1109/BCICTS48439.2020.9392948.
- Jeong S., Lin T.-H., Tentzeris M.M. A Real-Time Range-Adaptive Impedance Matching Utilizing a Machine Learning Strategy Based on Neural Networks for Wireless Power Transfer Systems // IEEE Transactions on Microwave Theory and Techniques. 2019. V. 67. № 12. P. 5340-5347. DOI: 10.1109/TMTT.2019.2938753.
- Nath S.K., Goud J.P., Kongbrailatpam S.S., Rajaram G., Raju K.C.J. A Highly Tunable Barium Strontium Titanate Thin Film MIM Varactor with Floating Metal // IEEE Microwave and Wireless Components Letters. 2021. V. 31. № 12. P. 1283-1286. DOI: 10.1109/LMWC.2021.3110981.
- Stärke P., Fritsche D., Carta C., Ellinger F. A Passive Tunable Matching Filter for Multiband RF Applications Demonstrated at 7 to 14 GHz // IEEE Microwave and Wireless Components Letters. 2017. V. 27. № 8. P. 703-705. DOI: 10.1109/LMWC.2017.2724006.
- Chen H. et al. Integrated Tunable Magnetoelectric RF Inductors // IEEE Transactions on Microwave Theory and Techniques. 2020. V. 68. № 3. P. 951-963. DOI: 10.1109/TMTT.2019.2957472.
- Wainstein N., Kvatinsky S. TIME - Tunable Inductors Using MEmristors // IEEE Transactions on Circuits and Systems I: Regular Papers. 2018. V. 65. № 5. P. 1505-1515. DOI: 10.1109/TCSI.2017.2760625.
- Baylon J., Agarwal P., Renaud L., Ali S.N., Heo D. A Ka-Band Dual-Band Digitally Controlled Oscillator With −195.1-dBc/Hz Based on a Compact High-Dual-Path Phase-Switched Inductor // IEEE Transactions on Microwave Theory and Techniques. 2019. V. 67. № 7. P. 2748-2758. DOI: 10.1109/TMTT.2019.2917671.
- Zheng Y., Shan G., Fan X., Yang Z., Li G. An 0.04–10.32 nH Ultracompact Tunable Inductor Based on Flexible Magnetic Coupling Tuning Technique // IEEE Transactions on Electron Devices. 2024. V. 71. № 8. P. 4945-4951. DOI: 10.1109/TED.2024.3418298.
- Zhu H., Zhu X., Yang Y., Sun Y. Design of Miniaturized On-Chip Bandpass Filters Using Inverting-Coupled Inductors in (Bi)-CMOS Technology // IEEE Transactions on Circuits and Systems I: Regular Papers. 2020. V. 67. № 2. P. 647-657. DOI: 10.1109/TCSI.2019.2948754.
- Wong K.W., Mansour R.R., Weale G. Reconfigurable Bandstop and Bandpass Filters with Wideband Balun Using IPD Technology for Frequency Agile Applications // IEEE Transactions on Components, Packaging and Manufacturing Technology. 2017. V. 7. № 4.
P. 610-620. DOI: 10.1109/TCPMT.2017.2667580. - Wang J., Wen J., Chi P.-L., Yang T. A 2.8–3.8-GHz Reconfigurable GaAs Low-Noise Amplifier with Improved Blocker Tolerance // IEEE Microwave and Wireless Technology Letters. 2024. V. 34. № 4. P. 419-422. DOI: 10.1109/LMWT.2024.3363715.
- de Foucauld E., Severino R., Nicolas D., Giry A., Delaveaud C. A 433-MHz SOI CMOS Automatic Impedance Matching Circuit // IEEE Transactions on Circuits and Systems II: Express Briefs. 2019. V. 66. № 6. P. 958-962. DOI: 10.1109/TCSII.2018.2834158.
- Abidi A.A. The Path to the Software-Defined Radio Receiver // IEEE Journal of Solid-State Circuits. 2007. V. 42. № 5. P. 954-966. DOI: 10.1109/JSSC.2007.894307.
- Ulversoy T. Software Defined Radio: Challenges and Opportunities // IEEE Communications Surveys & Tutorials. 2010. V. 12. № 4. P. 531-550. DOI: 10.1109/SURV.2010.032910.00019.
- Haque I.T., Abu-Ghazaleh N. Wireless Software Defined Networking: A Survey and Taxonomy // IEEE Communications Surveys & Tutorials. 2016. V. 18. № 4. P. 2713-2737. DOI: 10.1109/COMST.2016.2571118.
- Giannini V., Craninckx J., D'Amico S., Baschirotto A. Flexible Baseband Analog Circuits for Software-Defined Radio Front-Ends // IEEE Journal of Solid-State Circuits. 2007. V. 42. № 7. P. 1501-1512. DOI: 10.1109/JSSC.2007.899103.
- Javaid A., Ahmed T., Ali S. Performance Evaluation of Xilinx Zynq UltraScale+ RFSoC Device for Low Latency Applications // 2022 19th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan. 2022. P. 1041-1046. DOI: 10.1109/IBCAST54850.2022.9990470.
- Sun Y., Xie J., Han C., Wang L., Tao M. Array Element Selection Strategies for Interference Suppression in Reconfigurable Tripole Antenna Array Systems // IEEE Transactions on Vehicular Technology. 2023. V. 72. № 1. P. 557-572. DOI: 10.1109/TVT.2022.3202191.
- Alawieh M. et al. Efficient Programming of Reconfigurable Radio Frequency (RF) Systems // 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). Irvine. CA. USA. 2017. P. 772-779. DOI: 10.1109/ICCAD.2017.8203855.
- Xie L., Elnahas O., Zhao Q., Quan Z. Data-Driven RF Transmit Power Calibration for Wireless Communication Systems // IEEE Wireless Communications Letters. 2020. V. 9. № 5. P. 721-725. DOI: 10.1109/LWC.2020.2967213.
- Kundu N.K., Li Z., Rao J., Shen S., McKay M.R., Murch R.M. Optimal Grouping Strategy for Reconfigurable Intelligent Surface Assisted Wireless Communications // IEEE Wireless Communications Letters. 2022. V. 11. № 5. P. 1082-1086. DOI: 10.1109/LWC.2022.3156978.
- Wang J., Ghosh M., Challapali K. Emerging Cognitive Radio Applications: A Survey // IEEE Communications Magazine. 2011. V. 49. № 3. P. 74-81. DOI: 10.1109/MCOM.2011.5723803.
- Ma J., Li G.Y., Juang B.H. Signal Processing in Cognitive Radio // Proceedings of the IEEE. 2009. V. 97. № 5. P. 805-823. DOI: 10.1109/JPROC.2009.2015707.
- Kingsley N., Guerci J.R. Adaptive Amplifier Module Technique to Support Cognitive RF Architectures // 2014 IEEE Radar Conference. Cincinnati. OH. USA. 2014. P. 1329-1332. DOI: 10.1109/RADAR.2014.6875805.
- Merchant K., Revay S., Stantchev G., Nousain B. Deep Learning for RF Device Fingerprinting in Cognitive Communication Networks // IEEE Journal of Selected Topics in Signal Processing. 2018. V. 12. № 1. P. 160-167. DOI: 10.1109/JSTSP.2018.2796446.
- Bkassiny M., Li Y., Jayaweera S.K. A Survey on Machine-Learning Techniques in Cognitive Radios // IEEE Communications Surveys & Tutorials. 2013. V. 15. № 3. P. 1136-1159. DOI: 10.1109/SURV.2012.100412.00017.
- Ge F., Chen Q., Wang Y., Bostian C.W., Rondeau T.W., Le B. Cognitive Radio: From Spectrum Sharing to Adaptive Learning and Reconfiguration // 2008 IEEE Aerospace Conference. Big Sky. MT. USA. 2008. P. 1-10. DOI: 10.1109/AERO.2008.4526372.
- Towhidlou V., Shikh-Bahaei M. Adaptive Full-Duplex Communications in Cognitive Radio Networks // IEEE Transactions on Vehicular Technology. 2018. V. 67. № 9. P. 8386-8395. DOI: 10.1109/TVT.2018.2847229.