
Guangbao Shan1, Yanwen Zheng2, Huihua Cao3, V.I. Goncharenko4, A.A. Bakhtin5
1-3 School of Integrated Circuits, Xidian University (Xi’an, China)
4 Moscow Aviation Institute (National Research University) (Moscow, Russia)
5 National Research University “Moscow Institute of Electronic Technology” (Moscow, Russia)
1 gbshan@xidian.edu.cn; 2 zhengyanwen0503@163.com; 4 vladimirgonch@mail.ru; 5 bah@miee.ru
Problem Statement. The expansion of the application area of radio-frequency microsystems (SWaP-C) places strict demands on their weight, size and cost, which traditional radio-frequency systems based on integrated circuits using printed circuit board (PCB) technologies cannot satisfy. Therefore, additional research is needed into the technology of reconfigurable radio-frequency microsystems to enable their reconfiguration by functions, characteristics, dimensions, weight and cost, without increasing or minimally increasing the hardware.
Objective. To present the technology of reconfiguration of radio-frequency systems, including hardware and software reconfiguration methods.
Results. The hardware and software aspects of reconfigurable radio-frequency systems are presented. The directions of hardware implementation of reconfigurable antennas and devices, as well as network topology are considered. The software implementation of software-defined and intelligent radio, reconfiguration strategies and space studies are described. Forecasts for the development of reconfigurable technologies for radio-frequency systems are given.
Practical significance. To summarize the main technologies for reconstruction of radio frequency microsystems, to provide developers with some criteria for selecting reconstruction technologies, and to provide new researchers with a context for developing reconstruction technologies.
Guangbao Shan, Yanwen Zheng, Huihua Cao, Goncharenko V.I., Bakhtin A.A. Status and prospects of reconfigurable technologies for radio frequency systems. Radiotekhnika. 2025. V. 89. № 2. P. 167−182. DOI: https://doi.org/10.18127/j00338486-202502-21 (In Russian)
- Paek J.-S. et al. Efficient RF-PA Two-Chip Supply Modulator Architecture for 4G LTE and 5G NR Dual-Connectivity RF Front End. IEEE Journal of Solid-State Circuits. 2022. V. 57. № 4. P. 1075-1089. DOI: 10.1109/JSSC.2022.3144771.
- Attaran A., Handler W.B., Chronik B.A. RF Injection Network Development for Testing of Active Implantable Medical Devices Exposed to RF Fields in 1.5 T MRI Systems. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology. 2020. V. 4. № 1. P. 2-9. DOI: 10.1109/JERM.2019.2909386.
- Ma L., Zhang Z., Lu J., Gu C., Mao J. A Miniaturized Millimeter-Wave Radar Sensing Microsystem with High Isolation Full-Duplex Microstrip Patch Antenna. IEEE Microwave and Wireless Technology Letters. 2023. V. 33. № 10. P. 1509-1512. DOI: 10.1109/LMWT.2023.3308596.
- Yang X. et al. Low-Loss Heterogeneous Integrations with High Output Power Radar Applications at W-Band. IEEE Journal of Solid-State Circuits. 2022. V. 57. № 6. P. 1563-1577. DOI: 10.1109/JSSC.2021.3106444.
- Kim Y.-S. et al. Phased Array Weather Radar Architectures for Doppler Estimation wITH Space-Time Processing. IEEE Transactions on Radar Systems. 2024. V. 2. P. 725-738. DOI: 10.1109/TRS.2024.3444785.
- Huang C.-M., Wang S.-H., Wu T.-Y., Huang M.-C., Wu R.-B. Systematic Design for Mitigation of RF Desense by Interleaved Power Line in Two-Layer PCB. IEEE Transactions on Components, Packaging and Manufacturing Technology. 2021. V. 11. № 5. P. 859-864. DOI: 10.1109/TCPMT.2021.3063321.
- Chiang C.-W., Wu C.-T. M., Liu N.-C., Liang C.-J., Kuan Y.-C. A Cost-Effective W-Band Antenna-in-Package Using IPD and PCB Technologies. IEEE Transactions on Components, Packaging and Manufacturing Technology. 2022. V. 12. № 5. P. 822-827. DOI: 10.1109/TCPMT.2022.3170499.
- Dao T., Kearns A., Reyes Paredes D., Hueber G. Wideband High-Gain Stacked Patch Antenna Array on Standard PCB for D-Band 6G Communications. IEEE Antennas and Wireless Propagation Letters. 2024. V. 23. № 2. P. 478-482. DOI: 10.1109/LAWP.2023.3325414.
- Wang D.-M., Hu J.-G., Wu J. A Fully Integrated Low-Cost HF Multistandard RFID Reader SoC and Module for IoT Applications. IEEE Internet of Things Journal. 2022. V. 9. № 19. P. 19201-19213. DOI: 10.1109/JIOT.2022.3164919.
- Herrault F., Wong J.C., Tang Y., Tai H.Y., Ramos I. Heterogeneously Integrated RF Circuits Using Highly Scaled off-the-Shelf GaN HEMT Chiplets. IEEE Microwave and Wireless Components Letters. 2020. V. 30. № 11. P. 1061-1064. DOI: 10.1109/LMWC.2020.3025126.
- Das Sharma D., Pasdast G., Qian Z., Aygun K. Universal Chiplet Interconnect Express (UCIe): An Open Industry Standard for Innovations with Chiplets at Package Level. IEEE Transactions on Components, Packaging and Manufacturing Technology. 2022. V. 12. № 9. P. 1423-1431. DOI: 10.1109/TCPMT.2022.3207195.
- Herrault F. et al. Metal-Embedded Chiplet Assembly for Microwave Integrated Circuits. IEEE Transactions on Components, Packaging and Manufacturing Technology. 2020. V. 10. № 9. P. 1579-1582. DOI: 10.1109/TCPMT.2020.3012505.
- Shi Y., Shao D., Feng W., Zhang J., Zhou M. Silicon Interposer Package for MMIC Heterogeneous Integration Based on Gold/Solder Ball Flip-Chip Technique. IEEE Transactions on Components, Packaging and Manufacturing Technology. 2019. V. 9. № 8. P. 1659-1662. DOI: 10.1109/TCPMT.2019.2917292.
- Herrault F., Wong J.C., Tang Y., Tai H.Y., Ramos I. Heterogeneously Integrated RF Circuits Using Highly Scaled off-the-Shelf GaN HEMT Chiplets. IEEE Microwave and Wireless Components Letters. 2020. V. 30. № 11. P. 1061-1064. DOI: 10.1109/LMWC.2020.3025126.
- Zhai C., Liu H.-Y., Cheng K.-K.M. Single-Chip CMOS Reconfigurable Dual-Band Tri-Mode High-Efficiency RF Amplifier Design. IEEE Transactions on Circuits and Systems II: Express Briefs. 2021. V. 68. № 3. P. 868-872. DOI: 10.1109/TCSII.2020.3022908.
- Rao J. et al. A Novel Reconfigurable Intelligent Surface for Wide-Angle Passive Beamforming. IEEE Transactions on Microwave Theory and Techniques. 2022. V. 70. № 12. P. 5427-5439. DOI: 10.1109/TMTT.2022.3195224.
- Lyke J.C., Christodoulou C.G., Vera G.A., Edwards A.H. An Introduction to Reconfigurable Systems. Proceedings of the IEEE. 2015. V. 103. № 3. P. 291-317. DOI: 10.1109/JPROC.2015.2397832.
- Ali A.M.A. et al. A 14-bit 125 MS/s IF/RF Sampling Pipelined ADC with 100 dB SFDR and 50 fs Jitter. IEEE Journal of Solid-State Circuits. 2006. V. 41. № 8. P. 1846-1855. DOI: 10.1109/JSSC.2006.875291.
- Henthorn S., O’Farrell T., Anbiyaei M.R., Ford K.L. Concurrent Multiband Direct RF Sampling Receivers. IEEE Transactions on Wireless Communications. 2023. V. 22. № 1. P. 550-562. DOI: 10.1109/TWC.2022.3196279.
- He Z. et al. A Hardware Efficient Implementation of a Digital Baseband Receiver for High-Capacity Millimeter-Wave Radios. IEEE Transactions on Microwave Theory and Techniques. 2015. V. 63, № 5. P. 1683-1692. DOI: 10.1109/TMTT.2015.2417541.
- Fulton C., Yeary M., Thompson D., Lake J., Mitchell A. Digital Phased Arrays: Challenges and Opportunities. Proceedings of the IEEE. 2016. V. 104. № 3. P. 487-503. DOI: 10.1109/JPROC.2015.2501804.
- Watanabe A.O., Ali M., Sayeed S.Y.B., Tummala R.R., Pulugurtha M.R. A Review of 5G Front-End Systems Package Integration. IEEE Transactions on Components, Packaging and Manufacturing Technology. 2021. V. 11. № 1. P. 118-133. DOI: 10.1109/TCPMT.2020.3041412.
- Lau J.H. et al. Fan-Out Wafer-Level Packaging for Heterogeneous Integration. IEEE Transactions on Components, Packaging and Manufacturing Technology. 2018. V. 8. № 9. P. 1544-1560. DOI: 10.1109/TCPMT.2018.2848649.
- Sun M., Guan Lim T., Wee Ho D.S., Wu J., Chai T.C., Ma Y. 77-GHz FOWLP MIMO AiP for Compact High-Resolution Radar with Horizontally and Vertically Long- and Medium-Range Sensing. IEEE Transactions on Components, Packaging and Manufacturing Technology. 2024. V. 14. № 4. P. 537-546. DOI: 10.1109/TCPMT.2024.3383463.
- Haider N., Caratelli D., Yarovoy A.G. Frequency Reconfiguration of a Dual-Band Phased Array Antenna with Variable-Impedance Matching. IEEE Transactions on Antennas and Propagation. 2015. V. 63. № 8. P. 3477-3485. DOI: 10.1109/TAP.2015.2441120.
- Wang S.-T., Zhu L., Deng H. Design Approach for Pattern-Reconfigurable Patch Antenna without Extra Feeding Networks. IEEE Transactions on Antennas and Propagation. 2023. V. 71. № 2. P. 1925-1930. DOI: 10.1109/TAP.2022.3229179.
- Li M., Zhang Z., Tang M.-C., Zhu L., Liu N.-W. Bandwidth Enhancement and Size Reduction of a Low-Profile Polarization-Re-configurable Antenna by Utilizing Multiple Resonances. IEEE Transactions on Antennas and Propagation. 2022. V. 70. № 2. P. 1517-1522. DOI: 10.1109/TAP.2021.3111309.
- Liu X., Zhang W., Hao D., Liu Y. Cost-Effective Broadband and Compact Patch Antenna Based on Ball Grid Array Packaging for 5G NR FR2 Band Applications. IEEE Transactions on Circuits and Systems II: Express Briefs. 2023. V. 70. № 6. P. 1921-1925. DOI: 10.1109/TCSII.2022.3233381.
- Jin C., Sekhar V. N., Bao X., Chen B., Zheng B., Li R. Antenna-in-Package Design Based on Wafer-Level Packaging with Through Silicon via Technology. IEEE Transactions on Components, Packaging and Manufacturing Technology. 2013. V. 3. № 9. P. 1498-1505. DOI: 10.1109/TCPMT.2013.2261855.
- Fang Z. et al. Absorptive Filtering Packaging Antenna Design Based on Through-Glass Vias. IEEE Transactions on Components, Packaging and Manufacturing Technology. 2023. V. 13. № 11. P. 1817-1824. DOI: 10.1109/TCPMT.2023.3318434.
- Wainstein N., Adam G., Yalon E., Kvatinsky S. Radiofrequency Switches Based on Emerging Resistive Memory Technologies – A Survey. Proceedings of the IEEE. 2021. V. 109. № 1. P. 77-95. DOI: 10.1109/JPROC.2020.3011953.
- Singh T., Mansour R.R. Ultra-Compact Phase-Change GeTe-Based Scalable mmWave Latching Crossbar Switch Matrices. IEEE Transactions on Microwave Theory and Techniques. 2022. V. 70. № 1. P. 938-949. DOI: 10.1109/TMTT.2021.3128589.
- Zhou W., Sheng W., Yan B. A Single-Chip Wafer-Level Packaged SR-Crossbar RF MEMS Switch Matrix. IEEE Electron Device Letters. 2024. V. 45. № 7. P. 1309-1312. DOI: 10.1109/LED.2024.3403550.
- Hill C., Levy C.S., AlShammary H., Hamza A., Buckwalter J.F. RF Watt-Level Low-Insertion-Loss High-Bandwidth SOI CMOS Switches. IEEE Transactions on Microwave Theory and Techniques. 2018. V. 66. № 12. P. 5724-5736. DOI: 10.1109/TMTT.2018.2876825.
- Flewelling G.M. Broadband Reconfigurable Transceivers in SiGe. 2020 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS). Monterey. CA. USA. 2020. P. 1-4. DOI: 10.1109/BCICTS48439.2020.9392948.
- Jeong S., Lin T.-H., Tentzeris M.M. A Real-Time Range-Adaptive Impedance Matching Utilizing a Machine Learning Strategy Based on Neural Networks for Wireless Power Transfer Systems. IEEE Transactions on Microwave Theory and Techniques. 2019. V. 67. № 12. P. 5340-5347. DOI: 10.1109/TMTT.2019.2938753.
- Nath S.K., Goud J.P., Kongbrailatpam S.S., Rajaram G., Raju K.C.J. A Highly Tunable Barium Strontium Titanate Thin Film MIM Varactor with Floating Metal. IEEE Microwave and Wireless Components Letters. 2021. V. 31. № 12. P. 1283-1286. DOI: 10.1109/LMWC.2021.3110981.
- Stärke P., Fritsche D., Carta C., Ellinger F. A Passive Tunable Matching Filter for Multiband RF Applications Demonstrated at 7 to 14 GHz. IEEE Microwave and Wireless Components Letters. 2017. V. 27. № 8. P. 703-705. DOI: 10.1109/LMWC.2017.2724006.
- Chen H. et al. Integrated Tunable Magnetoelectric RF Inductors. IEEE Transactions on Microwave Theory and Techniques. 2020. V. 68. № 3. P. 951-963. DOI: 10.1109/TMTT.2019.2957472.
- Wainstein N., Kvatinsky S. TIME - Tunable Inductors Using MEmristors. IEEE Transactions on Circuits and Systems I: Regular Papers. 2018. V. 65. № 5. P. 1505-1515. DOI: 10.1109/TCSI.2017.2760625.
- Baylon J., Agarwal P., Renaud L., Ali S.N., Heo D. A Ka-Band Dual-Band Digitally Controlled Oscillator With −195.1-dBc/Hz Based on a Compact High-Dual-Path Phase-Switched Inductor. IEEE Transactions on Microwave Theory and Techniques. 2019. V. 67. № 7. P. 2748-2758. DOI: 10.1109/TMTT.2019.2917671.
- Zheng Y., Shan G., Fan X., Yang Z., Li G. An 0.04–10.32 nH Ultracompact Tunable Inductor Based on Flexible Magnetic Coupling Tuning Technique. IEEE Transactions on Electron Devices. 2024. V. 71. № 8. P. 4945-4951. DOI: 10.1109/TED.2024.3418298.
- Zhu H., Zhu X., Yang Y., Sun Y. Design of Miniaturized On-Chip Bandpass Filters Using Inverting-Coupled Inductors in (Bi)-CMOS Technology. IEEE Transactions on Circuits and Systems I: Regular Papers. 2020. V. 67. № 2. P. 647-657. DOI: 10.1109/TCSI.2019.2948754.
- Wong K.W., Mansour R.R., Weale G. Reconfigurable Bandstop and Bandpass Filters with Wideband Balun Using IPD Technology for Frequency Agile Applications. IEEE Transactions on Components, Packaging and Manufacturing Technology. 2017. V. 7. № 4.
P. 610-620. DOI: 10.1109/TCPMT.2017.2667580. - Wang J., Wen J., Chi P.-L., Yang T. A 2.8–3.8-GHz Reconfigurable GaAs Low-Noise Amplifier with Improved Blocker Tolerance. IEEE Microwave and Wireless Technology Letters. 2024. V. 34. № 4. P. 419-422. DOI: 10.1109/LMWT.2024.3363715.
- de Foucauld E., Severino R., Nicolas D., Giry A., Delaveaud C. A 433-MHz SOI CMOS Automatic Impedance Matching Circuit. IEEE Transactions on Circuits and Systems II: Express Briefs. 2019. V. 66. № 6. P. 958-962. DOI: 10.1109/TCSII.2018.2834158.
- Abidi A.A. The Path to the Software-Defined Radio Receiver. IEEE Journal of Solid-State Circuits. 2007. V. 42. № 5. P. 954-966. DOI: 10.1109/JSSC.2007.894307.
- Ulversoy T. Software Defined Radio: Challenges and Opportunities. IEEE Communications Surveys & Tutorials. 2010. V. 12. № 4. P. 531-550. DOI: 10.1109/SURV.2010.032910.00019.
- Haque I.T., Abu-Ghazaleh N. Wireless Software Defined Networking: A Survey and Taxonomy. IEEE Communications Surveys & Tutorials. 2016. V. 18. № 4. P. 2713-2737. DOI: 10.1109/COMST.2016.2571118.
- Giannini V., Craninckx J., D'Amico S., Baschirotto A. Flexible Baseband Analog Circuits for Software-Defined Radio Front-Ends. IEEE Journal of Solid-State Circuits. 2007. V. 42. № 7. P. 1501-1512. DOI: 10.1109/JSSC.2007.899103.
- Javaid A., Ahmed T., Ali S. Performance Evaluation of Xilinx Zynq UltraScale+ RFSoC Device for Low Latency Applications. 2022 19th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan. 2022. P. 1041-1046. DOI: 10.1109/IBCAST54850.2022.9990470.
- Sun Y., Xie J., Han C., Wang L., Tao M. Array Element Selection Strategies for Interference Suppression in Reconfigurable Tripole Antenna Array Systems. IEEE Transactions on Vehicular Technology. 2023. V. 72. № 1. P. 557-572. DOI: 10.1109/TVT.2022.3202191.
- Alawieh M. et al. Efficient Programming of Reconfigurable Radio Frequency (RF) Systems. 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). Irvine. CA. USA. 2017. P. 772-779. DOI: 10.1109/ICCAD.2017.8203855.
- Xie L., Elnahas O., Zhao Q., Quan Z. Data-Driven RF Transmit Power Calibration for Wireless Communication Systems. IEEE Wireless Communications Letters. 2020. V. 9. № 5. P. 721-725. DOI: 10.1109/LWC.2020.2967213.
- Kundu N.K., Li Z., Rao J., Shen S., McKay M.R., Murch R.M. Optimal Grouping Strategy for Reconfigurable Intelligent Surface Assisted Wireless Communications. IEEE Wireless Communications Letters. 2022. V. 11. № 5. P. 1082-1086. DOI: 10.1109/LWC.2022.3156978.
- Wang J., Ghosh M., Challapali K. Emerging Cognitive Radio Applications: A Survey. IEEE Communications Magazine. 2011. V. 49. № 3. P. 74-81. DOI: 10.1109/MCOM.2011.5723803.
- Ma J., Li G.Y., Juang B.H. Signal Processing in Cognitive Radio. Proceedings of the IEEE. 2009. V. 97. № 5. P. 805-823. DOI: 10.1109/JPROC.2009.2015707.
- Kingsley N., Guerci J.R. Adaptive Amplifier Module Technique to Support Cognitive RF Architectures. 2014 IEEE Radar Conference. Cincinnati. OH. USA. 2014. P. 1329-1332. DOI: 10.1109/RADAR.2014.6875805.
- Merchant K., Revay S., Stantchev G., Nousain B. Deep Learning for RF Device Fingerprinting in Cognitive Communication Networks. IEEE Journal of Selected Topics in Signal Processing. 2018. V. 12. № 1. P. 160-167. DOI: 10.1109/JSTSP.2018.2796446.
- Bkassiny M., Li Y., Jayaweera S.K. A Survey on Machine-Learning Techniques in Cognitive Radios. IEEE Communications Surveys & Tutorials. 2013. V. 15. № 3. P. 1136-1159. DOI: 10.1109/SURV.2012.100412.00017.
- Ge F., Chen Q., Wang Y., Bostian C.W., Rondeau T.W., Le B. Cognitive Radio: From Spectrum Sharing to Adaptive Learning and Reconfiguration. 2008 IEEE Aerospace Conference. Big Sky. MT. USA. 2008. P. 1-10. DOI: 10.1109/AERO.2008.4526372.
- Towhidlou V., Shikh-Bahaei M. Adaptive Full-Duplex Communications in Cognitive Radio Networks. IEEE Transactions on Vehicular Technology. 2018. V. 67. № 9. P. 8386-8395. DOI: 10.1109/TVT.2018.2847229.