350 руб
Журнал «Радиотехника» №4 за 2016 г.
Статья в номере:
Метод численного моделирования генераторов квазигармонических колебаний
Авторы:
В.В. Зайцев - к.ф.-м.н., профессор, зав. кафедрой радиофизики, Самарский национальный исследовательский университет имени академика С.П. Королева. E-mail: zaitsev@samsu.ru Ар.В. Карлов - вед. инженер-конструктор, АО «Концерн «Автоматика». E-mail: arkarlov@oao-avtomatika.ru
Аннотация:
Предложен алгоритм численного моделирования автоколебательных систем томсоновского типа. Для дискретизации времени в уравнении движения использован метод инвариантности импульсных характеристик линейных резонаторов в сочетании с формулами дробных дифференциальных преобразований дискретных гармонических функций. Приведен пример моделирования процесса установления автоколебаний в дробном осцилляторе. Обсуждена трансформация конечно-разностного вычислительного алгоритма в объект нелинейной динамики в дискретном времени. Приведены спектрально-корреляционные характеристики хаотических автоколебаний дробного осциллятора Ван дер Поля в дискретном времени.
Страницы: 105-112
Список источников

 

  1. Основы теории колебаний / Под ред. В.В Мигулина. М.: Наука. 1978. 392 с.
  2. Боголюбов Н.Н., Митропольский Ю.А. Асимптотические методы теории нелинейных колебаний. М.: Наука. 1974. 504 с.
  3. Найфе А. Введение в методы возмущений. М.: Мир. 1984. 536 с.
  4. Хайер Э., Нёрсетт С., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Нежесткие задачи. М.: Мир. 1990. 512 с.
  5. Зайцев В.В., Зайцев О.В., Никулин В.В. Интегральные модели автоколебательных систем // Физика волновых процессов и радиотехнические системы. 2006. Т. 9. № 1. С. 53−57.
  6. Кузнецов А.П., Селиверстова Е.С., Трубецков Д.И.и др. Феномен уравнения Ван дер Поля // Известия ВУЗов. Прикладная нелинейная динамика. 2014. № 4. С. 3−42.
  7. Тарасов В.Е. Модели теоретической физики с интегро-дифференцированием дробного порядка. М. Ижевск: Ижевский институт компьютерных исследований. 2011. 568 с.
  8. Зайцев В.В., Карлов Ар.В., Яровой Г.П.Динамика автоколебаний дробного томсоновского осциллятора // Физика волновых процессов и радиотехнические системы. 2012. Т. 15. № 1. С. 64−68.
  9. Shen Y.J., Wei P., Yang S.P. Primary resonance of fractional-order van der Pol oscillator // Nonlinear Dynamics. 2014. V. 77. № 4. P. 1629−1642.
  10. Liu Q.X., Liu J.K., Chen Y.M. Initial conditions-independent limit cycles of a fractional-order van der Pol oscillator // Journal of Vibration and Control. 2015 July 15. 0: 1077546315588031v1.
  11. Зайцев В.В., Карлов Ар.В. Динамика автогенераторов с дробными связями // Радиотехника. 2015. № 4. С. 38−43.
  12. Зайцев В.В., Карлов А.В., Шилин А.Н., Федюнин Э.Ю.О дискретных моделях колебательных систем // Физика волновых процессов и радиотехнические системы. 2015. Т. 18. № 1. С. 38−43.
  13. Зайцев В.В., Карлов А.В., Карлов Ар.В.О численном моделировании томсоновских автоколебательных систем // Вестник Самарского государственного университета. 2015. № 6(128). С. 141−150.
  14. Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и производные дробного порядка и некоторые их приложения. Минск: Наука и техника. 1987. 688 с.
  15. Мищенко Е.Ф.и др. Многоликий хаос / М: ФИЗМАТЛИТ. 2013. 432 с.
  16. Малахов А.Н. Флуктуации в автоколебательных системах. М.: Наука. 1968. 660 с.