350 rub
Journal Radioengineering №4 for 2016 г.
Article in number:
Method of numerical modeling of generators of quasi-harmonic oscillations
Authors:
V.V. Zaitsev - Ph. D. (Phys.-Math.), Professor, Head of Department of Radiophysics,
Samara State Aerospace University named after academician S.P. Korolev (National Research University). E-mail: zaitsev@samsu.ru
Ar.V. Karlov - Leading Design Engineer, JSC «Concern «Avtomatika». E-mail: arkarlov@oao-avtomatika.ru
Abstract:
The algorithm of numerical modeling of the Thomson type self-oscillating system based on using the invariance of impulse response of linear resonators in combination with the formulas of the differential transforms of discrete harmonic functions is offered in the article.
The general algorithm for modeling of oscillations of the Thomson type self-oscillators is obtained.
As an example, consider the use of the proposed method for modeling the fractional oscillator van der Pol, represented by a differential equation of motion, comprising left-sided Liouville derivative. Received a recursive algorithm for fractional Van der Pol oscillators capable of generating self-oscillation in discrete-time with properties of processes occurring in the oscillator in continuous time.
It was found that with increasing depth feedback violated assumption about quasi harmony of self-oscillation. Thus, the resulting al-gorithm is no longer adequately reflect the processes in the fractional oscillator Van der Pol, but it is proposed as an independent object of nonlinear dynamics in discrete-time.
It is shown that in such a way designed discrete self-oscillatory system demonstrates both regular and chaotic dynamics.
Described a computational method is proposed to use in numerical experiments on the time and frequency characteristics of nonlinear resonance systems.
Pages: 105-112
References
- Osnovy teorii kolebanijj / Pod red. V.V Migulina. M.: Nauka. 1978. 392 s.
- Bogoljubov N.N., Mitropolskijj JU.A. Asimptoticheskie metody teorii nelinejjnykh kolebanijj. M.: Nauka. 1974. 504 s.
- Najjfe A. Vvedenie v metody vozmushhenijj. M.: Mir. 1984. 536 s.
- KHajjer EH., Njorsett S., Vanner G. Reshenie obyknovennykh differencialnykh uravnenijj. Nezhestkie zadachi. M.: Mir. 1990. 512 s.
- Zajjcev V.V., Zajjcev O.V., Nikulin V.V. Integralnye modeli avtokolebatelnykh sistem // Fizika volnovykh processov i radiotekhnicheskie sistemy. 2006. T. 9. № 1. S. 53−57.
- Kuznecov A.P., Seliverstova E.S., Trubeckov D.I.i dr. Fenomen uravnenija Van der Polja // Izvestija VUZov. Prikladnaja nelinejjnaja dinamika. 2014. № 4. S. 3−42.
- Tarasov V.E. Modeli teoreticheskojj fiziki s integro-differencirovaniem drobnogo porjadka. M. Izhevsk: Izhevskijj institut kompjuternykh issledovanijj. 2011. 568 s.
- Zajjcev V.V., Karlov Ar.V., JArovojj G.P.Dinamika avtokolebanijj drobnogo tomsonovskogo oscilljatora // Fizika volnovykh processov i radiotekhnicheskie sistemy. 2012. T. 15. № 1. S. 64−68.
- Shen Y.J., Wei P., Yang S.P. Primary resonance of fractional-order van der Pol oscillator // Nonlinear Dynamics. 2014. V. 77. № 4. P. 1629−1642.
- Liu Q.X., Liu J.K., Chen Y.M. Initial conditions-independent limit cycles of a fractional-order van der Pol oscillator // Journal of Vibration and Control. 2015 July 15. 0: 1077546315588031v1.
- Zajjcev V.V., Karlov Ar.V. Dinamika avtogeneratorov s drobnymi svjazjami // Radiotekhnika. 2015. № 4. S. 38−43.
- Zajjcev V.V., Karlov A.V., SHilin A.N., Fedjunin EH.JU.O diskretnykh modeljakh kolebatelnykh sistem // Fizika volnovykh processov i radiotekhnicheskie sistemy. 2015. T. 18. № 1. S. 38−43.
- Zajjcev V.V., Karlov A.V., Karlov Ar.V.O chislennom modelirovanii tomsonovskikh avtokolebatelnykh sistem // Vestnik Samarskogo gosudarstvennogo universiteta. 2015. № 6(128). S. 141−150.
- Samko S.G., Kilbas A.A., Marichev O.I. Integraly i proizvodnye drobnogo porjadka i nekotorye ikh prilozhenija. Minsk: Nauka i tekhnika. 1987. 688 s.
- Mishhenko E.F.i dr. Mnogolikijj khaos / M: FIZMATLIT. 2013. 432 s.
- Malakhov A.N. Fluktuacii v avtokolebatelnykh sistemakh. M.: Nauka. 1968. 660 s.