350 руб
Журнал «Нейрокомпьютеры: разработка, применение» №1 за 2015 г.
Статья в номере:
Нейрохимические механизмы формирования аутоиммунных заболеваний нервной системы
Авторы:
И. В. Кудаева - д.м.н., доцент, зав. клинико-диагностической лабораторией биохимии, Восточно-сибирский научный центр экологии человека СО РАМН (г. Ангарск). E-mail: kudaeva_irina@mail.ru
Аннотация:
Представлены результаты экспериментальных и клинических исследований, посвященные патогенезу аутоиммунных заболеваний нервной системы. В настоящее время выделяют несколько патогенетических концепций аутоиммунных процессов в нервной системе. Особая роль в изучении данной проблемы отводится нарушению функции ГЭБ, которое возникает не только при массивном повреждении вещества мозга, но и при дисфункции эндотелия и астроцитов. В качестве другого механизма развития нейродегенерации рассмотрена дисфункция митохондрий, нарушение энергети-ческого обмена в нейронах и астроцитах. Среди нейрохимических механизмов развития аутоиммунных заболеваний нервной системы выделяют также эксайтотоксичность, нейротоксичность цинка, нейротоксичность амилоида-β, роль цитокинов, оксида азота и ростовых факторов. Ключевые слова:
Страницы: 16-24
Список источников

 

  1. Жирнова И. Г., Ларина И. В., Комелькова Л. В., Царева М. И. Роль адгезивных свойств лейкоцитов и сыворотки крови в патогенезе рассеянного склероза // Журнал неврологии и психиатрии им. C.C. Корсакова. 2008. Т. 108. № 4. С. 56-61.
  2. Srivastava R, Aslam M, Kalluri S., Schirmer L. et al. Potassium Channel KIR4.1 as an Immune Target in Multiple Sclerosis // N Engl J Med 2012. V. 367. P. 115-123.
  3. Dutta R., McDonough J., Yin X., Peterson J., et al. Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. // Ann. Neurol. 2006. V.59. P.478-489. http://www.ncbi.nlm.nih.gov/pubmed/16392116
  4. Lu F., Selak M., O\'Connor J., Croul S., et al. Oxidative damage to mitochondrial DNA and activity of mitochondrial enzymes in chronic active lesions of multiple sclerosis. // J. Neurol. Sci. 2000. V. 177. P. 95-103. http://www.ncbi.nlm.nih.gov/pubmed/10980305
  5. Nikic I., Merkler D., Sorbara C., Brinkoetter M.,et al. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. // Nat. Med. 2011. V. 17. P. 495-499. http://www.ncbi.nlm.nih.gov/pubmed/21441916
  6. Hoyer S, Frolich I. Dementia: the significance of cerebral metabolic disturbances in Alzheimer-s disease. Relation to Parkinson-s disease. In: Handbook of neurochemistry and molecular biology 3rd edition, degenerative diseases of the nervous system. New York: Springer; 2007. P. 189-232.
  7. Pappas B.A., Bayley P.J., Bui B.K., Hansen L.A. Choline acetyltransferase activity and cognitive domain scores of Alzheimer-s patients. // Neurobiol Aging. 2000. V. 21. P.11-17. http://www.ncbi.nlm.nih.gov/pubmed/10794843
  8. Szutowicz A., Bielarczyk H., Gul S., Ronowska A. et al. Phenotype-dependent susceptibility of cholinergic neuroblastoma cells to neurotoxic inputs. // Metab Brain Dis. 2006. V.21. P. 149-161. http://www.ncbi.nlm.nih.gov/pubmed/16724269
  9. Martin L.J. Mitochondrial pathobiology in Parkinson-s disease and amyotrophic lateral sclerosis. // J Alzheimer-s Dis. 2010. V. 20. P. 335-356. http://www.ncbi.nlm.nih.gov/pubmed/20413846
  10. Higgins G.C., Beart P.M., Shin Y.S., Chen M.J. et al. Oxidative stress: emerging mitochondrial and cellular themes and variations in neuronal injury. // J Alzheimer-s Dis. 2010. V. 20(2). P. 453-473. http://www.ncbi.nlm.nih.gov/pubmed/20463398
  11. Lin M. T., Beal M. F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. // Nature. 2006. V. 443. P. 787-795. http://www.ncbi.nlm.nih.gov/pubmed/17051205
  12. Moncada S., Bolanos J. P. Nitric oxide, cell bioenergetics and neurodegeneration. // J Neurochem. 2006. V. 97. P. 1676-1689. http://www.ncbi.nlm.nih.gov/pubmed/16805776
  13. Murphy M. P., LeVine H. Alzheimer-s disease and amyloid-βpeptide. // J Alzheimer-s Dis. 2010. V. 19. P. 311-323. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2813509/?report=reader
  14. Berridge M. J. Calcium signaling and Alzheimer-s disease. // Neurochem Res. 2011. V. 36. P. 1149-1156. http://www.ncbi.nlm.nih.gov/pubmed/21184278
  15. Sensi S.L., Paoletti P., Bush A.I., Sekler I. Zinc in the physiology and pathology of the CNS. // Nat Rev Neurosci. 2009. V. 10. P. 780-792. http://www.ncbi.nlm.nih.gov/pubmed/19826435
  16. Steinert J. R., Chernova T., Forsythe I. D. Nitric oxide signaling in brain function, dysfunction, and dementia. // Neuroscientist. 2010. V. 16. P. 435-452. http://www.ncbi.nlm.nih.gov/pubmed/20817920
  17. Szutowicz A. Aluminum, NO, and nerve growth factor neurotoxicity in cholinergic neurons. // J Neurosci Res. 2001. V. 66. P. 1009-1018. http://www.ncbi.nlm.nih.gov/pubmed/11746431
  18. Fortress A. M., Buhusi M., Helke K. L., Granholm A. C. E. Cholinergic degeneration and alterations in the TrkA and p75NTR balance as a result of pro-NGF injection into aged rats. // J Aging Res. 2011. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3140182/?report=reader
  19. Perez S.E., He B., Muhmmad N., Oh K.J. et al. Cholinotropic basal forebrain system alterationsin 3xTg-AD transgenic mice. // Neurobiol Dis. 2011. V. 41. P. 338-352. http://www.ncbi.nlm.nih.gov/pubmed/20937383
  20. Takeda A. Zinc signaling in the hippocampus and its relation to pathogenesis of depression. // Mol Neurobiol. 2011. V. 44. P. 166-174. http://www.ncbi.nlm.nih.gov/pubmed/21161611
  21. Frederickson C. J., Maret W., Cuajungco M. P. Zinc and excitotoxic brain injury. // Neuroscientist. 2004. V. 10. P. 18-25. http://www.ncbi.nlm.nih.gov/pubmed/14987444
  22. Mocchegiani E., Bertoni-Freddari C., Marcellini F., Malavolta M. Brain, aging and neurodegeneration: role of zinc ion availability. // Progr Neurobiol. 2005. V. 75. P. 367-390. http://www.ncbi.nlm.nih.gov/pubmed/15927345
  23. Hynd M.R., Scott H. L., Dodd P. R. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer-s disease. // Neurochem Int. 2004. V. 45. P. 583-595. http://www.ncbi.nlm.nih.gov/pubmed/15234100
  24. Supnet C., Bezprozvanny I. Neuronal calcium signaling, mitochondrial dysfunction, and Alzheimer-s disease. // J Alzheimer-s Dis. 2010. V. 20. P. S487-S498. http://www.ncbi.nlm.nih.gov/pubmed/20413848
  25. Yu J. T., Chang R. C. C., Tan L. Calcium dysregulation in Alzheimer-s disease: from mechanisms to therapeutic opportunities. // Progr Neurobiol. 2009. V. 89. P. 240-255. http://www.ncbi.nlm.nih.gov/pubmed/19664678
  26. Jhala S.S., Hazell A.S. Modeling neurodegenerative disease pathophysiology in thiamine deficiency: consequences of impaired oxidative metabolism. // Neurochem Int. 2011. V. 58. P. 248-260. http://www.ncbi.nlm.nih.gov/pubmed/21130821
  27. Ronowska A., Gul-Hinc S., Bielarczyk H., Pawełczyk T. Effects of zinc on SN56 cholinergic neuroblastoma cells. // J Neurochem. 2007. V. 103. P. 972-983. http://www.ncbi.nlm.nih.gov/pubmed/17662047
  28. Ronowska A., Dyś A., Jankowska-Kulawy A., Klimaszewska-Łata J. et al. Short-term effects of zinc on acetylcholine metabolism and viability of SN56 cholinergic neuroblastom cells. // Neurochem Int. 2010. V. 56. P. 143-151. http://www.ncbi.nlm.nih.gov/pubmed/19781588
  29. Madhavarao N. C., Chinopoulos C., Chandrasekaran K., Namboodiri M. A. A. Characterization of the N-acetylaspartate biosynthetic enzyme from rat brain. // J Neurochem. 2003. V. 86. P. 824-835. http://www.ncbi.nlm.nih.gov/pubmed/12887681
  30. Deutsch J., Rapoport S. I., Rosenberger T. A. Valproyl-CoA and estrified valproic acid are not found in brains of rats treated with valproic acid, but the brain concentrations of CoA and acetyl-CoA are altered. // Neurochem Res. 2003. V. 28. P. 861-866. http://www.ncbi.nlm.nih.gov/pubmed/12718439
  31. Bossy-Wetzel E., Talantova M. V., Lee W. D., Scholzke M.N. et al. Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38-activated K+ channels // Neuron. 2004. V. 41. P. 351-365. http://www.ncbi.nlm.nih.gov/pubmed/14766175
  32. Bielarczyk H., Gul S., Ronowska A., Bizon-Zygmańska D. et al. RS-α-lipoic amid protects cholinergic cells against sodium nitroprusside and amyloid-βneurotoxicity through restoration of acetyl-CoA level. // J Neurochem. 2006. V. 98. P. 1242-1251. http://www.ncbi.nlm.nih.gov/pubmed/16787407
  33. Bielarczyk H., Tomaszewicz M., Madziar B., Ćwikowska J. et al. Relationships between cholinergic phenotype and acetyl-CoA level in hybrid Marine neuroblastoma cells of sep tal origin // J Neurosci Res. 2003. V. 73. P. 717-721. http://www.ncbi.nlm.nih.gov/pubmed/12929139
  34. Bielarczyk H., Jankowska A., Madziar B., Matecki A. et al. Differential toxicity of nitric oxide, aluminum and amyloid-beta peptide in SN56 cholinergic cells from mouse septum // Neurochem Int. 2003. V. 42. P. 323-331. http://www.ncbi.nlm.nih.gov/pubmed/12470706
  35. Kassiotis G, Kollias G. Uncoupling the proinflammatory from the immunosuppressive properties of tumor necrosis factor (TNF) at the p55 TNF receptor level: implications for pathogenesis and therapy of autoimmune demyelination. // Journal of Experimental Medicine. 2001. V. 193(4). P. 427-434. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2195909/
  36. Lin J, Ziring D, Desai S, et al.TNFα blockade in human diseases: an overview of efficacy and safety. // Clinical Immunology. 2008. V. 126(1). P. 13-30. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2291511/
  37. The Lenercept Multiple Sclerosis Study Group and The University of British Columbia MS/MRI Analysis Group. TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. // Neurology. 1999. V. 53(3). P. 457-465.
  38. Robinson W. H., Genovese M. C., Moreland L. W. Demyelinating and neurologic events reported in association with tumor necrosis factor alpha antagonism: by what mechanisms could tumor necrosis factor alpha antagonists improve rheumatoid arthritis but exacerbate multiple sclerosis - // Arthritis & Rheumatism. 2001. V. 44(9). P. 1977-1983.
  39. Ransohoff R. M., Perry V. H. Microglial physiology: unique stimuli, specialized responses. // Annu Rev Immunol. 2009. V. 27. P. 119-145.
  40. Block M. L., Zecca L., Hong J. S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. // Nat Rev Neurosci. 2007. V. 8. P. 57-69.
  41. Bernstein H. G., Steiner J., Bogerts B. Glial cells in schizophrenia: pathophysiological significance and possible consequences for therapy. // Expert Rev Neurother. 2009. V. 9. P. 1059-1071.
  42. Monji A., Kato T., Kanba S. Cytokines and schizophrenia: Microglia hypothesis of schizophrenia. // Psychiatry Clin Neurosci. 2009. V. 63. P. 257-265.
  43. Dong Y., Benveniste E. N. Immune function of astrocytes. // Glia. 2001. V. 36. P. 180-190. http://www.ncbi.nlm.nih.gov/pubmed/11596126
  44. Donato R. Intracellular and extracellular roles of S100 proteins. // Microsc Res Tech. 2003. V. 60. P. 540-551. http://www.ncbi.nlm.nih.gov/pubmed/12645002
  45. Heizmann C. W., Ackermann G. E., Galichet A. Pathologies involving the S100 proteins and RAGE. // Subcell Biochem. 2007. V. 45. P. 93-138. http://www.ncbi.nlm.nih.gov/pubmed/18193636
  46. Rothermundt M., Ponath G., Glaser T., Hetzel G. S100B serum levels and long-term improvement of negative symptoms in patients with schizophrenia. // Neuropsychopharmacology. 2004. V. 29. P. 1004-1011. http://www.ncbi.nlm.nih.gov/pubmed/14997170
  47. Adami C., Sorci G., Blasi E. et al. S100B Expression in and effects on microglia // Glia. 2001. V. 33. P. 131-142.
  48. Sorci G., Bianchi R., Riuzzi F., Tubaro C. et al. S100B protein, a damage-associated molecular pattern protein in the brain and heart, and beyond. // Cardiovasc Psychiatry Neurol. 2010. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2933911/
  49. Steiner J., Bogerts B., Schroeter M. L., Bernstein H.G. S100B protein in neurodegenerative disorders. // Clin Chem Lab Med. 2011. V. 49. P. 409-424.
  50. Steiner J., Myint A.M., Schiltz K., Westphal S. et al. S100B serum levels in schizophrenia are presumably related to visceral obesity and insulin resistance. // Cardiovasc Psychiatry Neurol. 2010. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2902008/
  51. Steiner J., Bernstein H. G., Bielau H., Berndt A. et al. Evidence for a wide extra-astrocytic distribution of S100B in human brain. // BMC Neurosci. 2007. V. 8. P. 2. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1769505/
  52. Гомазков О. А. «Нейропептиды и ростовые факторы мозга» Информационно-справочное издание. Москва, 2002. 240 с.
  53. Ferrari G., Toffano G., Skaper S.D. Epidermal growth factor exerts neuronotrophic effects on dopaminergic and GABAergic CNS neurons: comparison with basic fibroblast growth factor. // J Neurosci Res. 1991. V. 30. P. 493-497. http://www.ncbi.nlm.nih.gov/pubmed/1800771
  54. Li Y., Liu L., Barger S.W., Griffin W.S. Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. // J Neurosci. 2003. V. 23. P. 1605-1611. http://www.ncbi.nlm.nih.gov/pubmed/12629164
  55. Namba H., Nagano T., Iwakura Y., Xiong H. et al. Transforming growth factor alpha attenuates the functional expression of AMPA receptors in cortical GABAergic neurons. // Mol Cell Neurosci. 2006. V. 31. P. 628-641. http://www.ncbi.nlm.nih.gov/pubmed/16443372
  56. Namba H., Takei N., Nawa H. Transforming growth factor-alpha changes firing properties of developing neocortical GABAergic neurons by down-regulation of voltage-gated potassium currents. // Neuroscience. 2003. V. 122. P. 637-646. http://www.ncbi.nlm.nih.gov/pubmed/14622907
  57. Qin L., Wu X., Block M.L., Liu Y. et al. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. // Glia. 2007. V. 55. P. 453-462. http://www.ncbi.nlm.nih.gov/pubmed/17203472
  58. Kronfol Z., Remick D. G. Cytokines and the brain: implications for clinical psychiatry. // Am J Psychiatry. 2000. V. 157. P. 683-694. http://www.ncbi.nlm.nih.gov/pubmed/10784457
  59. Raison C. L., Miller A. H. Is depression an inflammatory disorder? // Curr Psychiatry Rep. 2011. V. 13. P. 467-475. http://www.ncbi.nlm.nih.gov/pubmed/21927805
  60. Benilova I., Karran E., De Strooper B. The toxic Aβoligomer and Alzheimer-s disease: an emperor in need of clothes. // Nat Neurosci. 2012. V. 15. P. 1-9. http://www.ncbi.nlm.nih.gov/pubmed/22286176
  61. Klunk W.E. Amyloid imaging as a biomarker for cerebral β-amyloidosis and risk prediction for Alzheimer dementia. // Neurobiol Aging. 2011. V. 32. P. S20-S36. http://www.ncbi.nlm.nih.gov/pubmed/22078170
  62. Robakis N. K. Mechanisms of AD neurodegeneration may be independent of Aβand its derivatives. // Neurobiol Aging. 2011. V. 32. P. 372-379. http://www.ncbi.nlm.nih.gov/pubmed/20594619