350 руб
Журнал «Нанотехнологии: разработка, применение - XXI век» №4 за 2016 г.
Статья в номере:
Аддитивные технологии для металлов: современные достижения создают новые вызовы для исследователей
Авторы:
А.В. Коптюг - к.ф.-м.н., профессор, лаборатория аддитивных технологий, Центр спортивных технологий при Университете Центральной Швеции (Эстерсунд, Швеция) E-mail: andrei.koptioug@miun.se Ларш-Эрик Реннар - профессор, Лаборатория аддитивных технологий, Центр спортивных технологий при Университете Центральной Швеции (Эстерсунд, Швеция) E-mail: lars-erik.rannar@miun.se Микаэль Бэкстрём - профессор, Лаборатория аддитивных технологий, Центр спортивных технологий при Университете Центральной Швеции (Эстерсунд, Швеция) E-mail: mikael.backstrom@miun.se Р.А. Сурменев - к.ф.-м.н., начальник Центра технологий; доцент, кафедра экспериментальной физики, Томский политехнический университет (РФ) E-mail: surmenev@tpu.ru
Аннотация:
Отмечено, что аддитивные технологии, AТ (также широко известные как 3D-печать) представляет собой семейство современных методов активно проникающих в промышленное производство и обещающие стать одной из ведущих отраслей промышленности в ближайшие годы. Технологии, использующие пучковую плавку металлических порошков (электронно-лучевая плавка, EЛП и основанные на использовании лазеров) металла являются одними из наиболее перспективных представителей этого семейства, позволяющие изготовление деталей чрезвычайно сложных форм из традиционных металлов и сплавов, а также новых уникальных материалов. Быстрое развитие этих технологий дает большие преимущества, при этом обеспечивает новые вызовы. Описаны экстремальные условия плавления и затвердевания материала, характерные для пучковых АТ, определяющие уникальные свойства и микроструктуру получаемых материалов, что позволяет говорить о новой «нестационарной» металлургии. Рассмотрены проблемы, которые препятствуют дальнейшему успешному развитию пучковых АТ-технологий, представляя широту предстоящих исследований. Предлагаемые материалы базируются на многолетнем опыте исследовательской и разработческой деятельности в области аддитивных технологий, а также последующей обработки и использования произведённых структур и изделий.
Страницы: 12-25
Список источников

 

  1. Herderick E. Additive Manufacturing of Metals: A Review // Materials Science and Technology. 2011. № MS&T\'11. P. 1413-1425.
  2. Frazier W.E. Metal Additive Manufacturing: A Review // Journal of Materials Engineering and Performance. 2014. V 23 № 6. P. 1917-1928.
  3. Koptyug A., Rännar L.-E., Bäckström M., Langlet A. Bulk Metallic Glass Manufacturing using Electron Beam Melting // Proceedings of International Conference on Additive Manufacturing & 3D Printing. 8-9 July 2013. Nottingham, UK .
  4. Lohfeld S., Barron V., McHug P.E. Biomodels of bone: a review // Annals of Biomedical Engineering. 2005. V. 33 № 10. P. 1295-1311.
  5. Alvarez K., Nakajima H. Metallic scaffolds for bone regeneration // Materials 2. 2009. № 3. P. 790-832.
  6. Alla R.K., Ginjupalli K., Upadhya N., Shammas M., Ravi R.K., Sekhar R. Surface Roughness of Implants: A Review // Trends in Biomaterials & Artificial Organs. 2011. V. 25 № 3. P. 112-118.
  7. Cronskär M., Rännar L.-E., Bäckström M., Koptyug A. Application of electron beam melting to titanium hip stem implants // Proc. Intl. Conference on Additive Technologies. 2008. Vienna, DAAAM International. 2008. P. 1559.
  8. Wennerberg A., Albrektsson T. Current challenges in successful rehabilitation with oral implants // Journal of Oral Rehabilitation. 2011. V. 38 № 4. P. 286-294.
  9. Koptyug A., Rännar L.-E., Bäckström M., Fager Franzén S., Dérand, P. Additive manufacturing technology applications targeting practical surgery // International Journal of Life Science and Medical Research. 2013. V. 3. № 1. P. 15-24.
  10. Koptyug A., Rännar L.-E., Bäckström M., Cronskär, M. Additive manufacturing for medical and biomedical applications: advances and challenges // Materials Science Forum. 2014. V. 783-786. P. 1286-1291.
  11. Czajkiewicz Z., Sirinterlikci A., Uslu O. Rapid manufacturing: The future of production systems // Proc. 2007 American Society for Engineering Education (ASEE) Conference. 2007. P. 65. Available online:           http://www.icee.usm.edu/ICEE/conferences/ asee 2007/ pa­­pers/ 65_RAPID_MANUFACTURING___THE_FUTURE_OF_PROD.pdf
  12. ARCAM AB, company website: http://www.arcam.com/technology/electron-beam-melting/.
  13. Pfann W.G. Zone Melting, Ed. J.H. Hollomon. Literary Licensing, LLC. 2013. 252 p.
  14. Herington E.F.G. Zone refinement as a purification tool // Annals of the New York Academy of Sciences. 1966. V. 137. Purification of Materials. P. 63-71.
  15. ASTM F2924 - 14. Standard Specification for Additive Manufacturing Titanium-6 Aluminum-4 Vanadium with Powder Bed Fusion // online at: http://www.astm.org/Standards/F2924.htm.
  16. Pauly S., Löber L., Petters R., Stoica M., Scudino S., Kühn U., Eckert J. Processing metallic glasses by selective laser melting // Materials Today. 2013. V. 16. № 1-2. P. 37-41.
  17. Anderson I.E, Terpstra R.L. Progress toward gas atomization processing with increased uniformity and control // Materials Science and Engineering A. 2002. V. 326 № 1. P. 101-109.
  18. Tuck M., Hague C., Ashcroft I., Wildman R. A comparative study of metallic additive manufacturing power consumption // Proc. Solid Freeform Fabrication Symposium. 8-10 Aug. 2010. Austin USA. 2010. P. 278-288.
  19.  Cronskär M., Rännar L., Bäckström M. Implementation of digital design and solid free-form fabrication for customization of implants in trauma orthopaedics // Journal of Medical and Biological Engineering. 2012. V. 32 № 2. P. 91-96.
  20.  Cronskär M., Bäckström M. Modeling of fractured clavicles and reconstruction plates using CAD, finite element analysis and real musculoskeletal forces input // WIT Transactions on Biomedicine and Health. 2014. V. 17. P. 235-243.
  21.  Cronskär M., Rasmussen J., Tinnsten, M. Combined finite element and multibody musculoskeletal investigation of a fractured clavicle with reconstruction plate // Computer Methods in Biomechanics and Biomedical Engineering. 2015. V. 18 № 7. P. 740-748.
  22.  Hollister S.J., Maddox R.D., Taboas J.M. Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints // Biomaterials. 2002. V. 23 № 20. P. 4095-4103.
  23.  Heinl P., Müller L., Körner C., Singer R.F., Müller F.A. Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting // Acta Biomaterialia. 2008. V. 4. № 5. P. 1536-1544.
  24.  Murr L.E., Gaytan S.M., Medina F., Lopez H., Martinez E., Machado B.I., Hernandez D.H., Martinez L., Lopez M.I., Wiker R.B., Bracke J. Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays // Philosophical Transactions of the Royal Society of London A. 2010. V. 368. № 1917. P. 1999-2032.
  25.  Koptyug A., Rännar L.-E., Bäckström M., Klingvall R.P. Electron Beam Melting: Moving from Macro- to Micro- and Nanoscale // Materials Science Forum. 2012. V. 706-709. P. 532-537.
  26. Ponader S., Vairaktaris E., Heinl P., von Wilmowsky C., Rottmair A., Körner C., Singer R.F., Holst S., Schlegel K.A., Neukam F.W., Nkenke E. Effect of topographical surface modifications of Electron Beam Melted Ti-6Al-4V titanium on human fetal osreoblats // Journal of Biomedical Research A. 2007. V. 84A. № 4. P. 1111-1119.
  27. Surmenev R.A., Surmeneva M.A., Ivanova A.A. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis - a review // Acta Biomaterialia. 2014. V. 10 .№ 2. P. 557-579.
  28. Chudinova E., Surmeneva M., Koptioug A., Skoglund P., Surmenev R. Аdditive manufactured Ti6Al4V scaffolds with the RF-magnetron sputter deposited hydroxyapatite coating // Journal of Physics: Conference Series. 2016. V. 669. 012004 doi: 10.1088/1742-6596/669/1/012004.
  29. Chudinova E., Surmeneva M., Koptioug A., Sharonova A., Loza K., Surmenev R. Surface modification of additive manufactured Ti6Al4V alloy with Ag nanoparticles: wettability and surface morphology study // IOP Conf. Series: Materials Science and Engineering. 2016. V. 116. 012004.
  30. Chudinova E., Surmeneva M., Koptioug A., Savintseva I., Selezneva I., Skoglund P., Syrtanov M., Surmenev R. In Vitro Assessment of Hydroxyapatite Coating on the Surface of Additive Manufactured Ti6Al4V Scaffolds // Materials Science Forum. 2016. V. 879. P. 2444-2449.
  31. Bosco R., Van Den Beucken J., Leeuwenburgh S., Jansen J. Surface Engineering for Bone Implants: A Trend from Passive to Active Surfaces // Coatings. 2012. V. 2. P. 95-119.
  32.  Surmenev R.A. A review of plasma-assisted methods for calcium phosphate-based coatings fabrication // Surface Coating Technology. 2012. V. 206. № 8-9. P. 2035-2056.
  33.  Dorozhkin S.V. Calcium orthophosphate-based biocomposites and hybrid biomaterials // Journal of Materials Science. 2009. V. 44. P. 2343-2387.
  34.  Dorozhkin S.V., Epple M. Biological and medical significance of calcium phosphates // Angewandte Chemie International Edition (in English). 2002. V. 41. P. 3130-3146.
  35.  Ratner B.D., Hoffman A.S., Schoen F.J., Lemons J.E. Biomaterials Science: An Introduction to Materials in Medicine. 2nd ed. New York: Elsevier Academic Press. 2004. 851 p.
  36.  Koptyug A., Rännar L.-E., Bäckström M., Shen Z. New metallurgy of Additive Manufacturing in Metal: Experiences from the Material and Process Development with Electron Beam Melting Technology (EBM) // Materials Science Forum. 2016. V. 879. P. 996-1001.
  37.  Paradis P.-F., Ishikawa T., Yoda S. Non-Contact Measurements of Surface Tension and Viscosity of Niobium, Zirconium, and Titanium Using an Electrostatic Levitation Furnace // International Journal of Thermophysics. 2002. V. 23 № 3. P. 825-842.
  38.  Tsukamoto S., Umezawa O. Metastable alloy phase formation from undercooled steel and TiAl melts // Materials Science and Engineering: A. 1997. V. 223 № S 1-2. P. 99-113.
  39.  Kenel C., Grolimund D., Fife J.L., Samson V.A., Van Petegem S., Van Swygenhoven H. Combined in situ synchrotron micro X-ray diffraction and high-speed imaging on rapidly heated and solidified Ti-48Al under additive manufacturing conditions // Scripta Materialia. 2016. V. 114. P. 117-120.
  40.  Kenel C, Schloth P, Van Petegem S, Fife JL, Grolimund D, Menzel A, Van Swygenhoven H, Leinenbach C. In Situ Synchrotron X-Ray Diffraction and Small Angle X-Ray Scattering Studies on Rapidly Heated and Cooled Ti-Al and Al-Cu-Mg Alloys Using Laser-Based Heating // The Journal of The Minerals, Metals & Materials Society (TMS). 2016. V. 68. № 3. P. 978-984.