350 руб
Журнал «Нанотехнологии: разработка, применение - XXI век» №1 за 2009 г.
Статья в номере:
Современные тенденции в развитии элементов вычислительных устройств post-CMOS эры
Авторы:
О.В. Снигирев, Е.С. Солдатов, В.А. Крупенин, С.П. Губин, В.В. Колесов, Г.Б. Хомутов, В.В. Шорохов, А.С. Трифонов, Д.Е. Преснов, Д. Баранов - Физический факультет МГУ им. М.В. Ломоносова. E-mail: oleg.snigirev@phys.msu.ru
Аннотация:
Описаны современные тенденции развития элементной базы вычислительных устройств с характерными размерами элементов на уровне 10 нм и менее. Приведены данные о состоянии исследований по созданию элементов информационных сред, связанных с транспортом одиночных электронов методами молекулярной электроники. Сообщается о первых экспериментальных шагах в направлении создания гибридных структур, объединяющих полупроводниковую и молекулярную электронику. Описаны возможности применения явления электролюминесценции одиночных молекул и квантовых точек для передачи информации между элементами в информационных наносредах
Страницы: 43-56
Список источников
- John Markoff. - New York Times, May 17, 2004.
- Fichthorn K., Scheffler M. - Nature, 2004, vol. 429, p. 617.
- Jackson A.M., Myerson J.W., Stellacci F. - Nature Materials, 2004, vol. 3, p. 330.
- Alivisatos A.P. Semiconductors clusters, nanocrystals and quantum dots. - Science, 1996, vol. 271, p. 933.
- Colvin V. L., Goldstein A. N., Alivisatos A. P. Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers. - J. Am. Chem. Soc., 1992, vol. 114, p. 5221.
- http://www.smalltimes.com/print_doc.cfm-doc_id-7735.
- Roco M.C. The future of national nanotechnology initiative. - http://nano.gov.
- International Technology Roadmap for Semiconductors. - Available on line at, http://public.itrs.net/.
- Flood A.H., Stoddart J.F., Steurman D.W., Heath J.R. Whence molecular electronics. - Science, 2004, vol. 306, p. 2055.
- Hassan M.H.A. Small things and big changes in the developing word. - Science, 2005, vol. 309, p.65.
- Soldatov E.S., Khanin V.V., Trifonov A.S., et al. Single-electron transistor based on a single cluster molecule at room temperature. - JETP Lett., 1996, vol. 64, p. 556.
- Park J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. - Nature, June 2002, vol. 417, p. 722.
- Kubatkin S. et al. Single-electron transistor of a single organic molecule with access to several redox states. - Nature, 2003, vol. 425, p. 698.
- Visconti P. et al. The fabrication of sub-10nm planar electrodes and their use for a molecule-based transistor. - Nanotechnology, 2004, vol. 15, p. 807.
- Nagase T., Kubota T., Mashiko S. Fabrication of nanogap electrodes for measuring electrical properties of organic molecules using a focused ion beam. - Thin Solid Films, 2003, vol. 438 - 439, pp. 374 - 377.
- Xu B., Tao N.J. Measurements of single-molecule resistance by repeated formation of molecular junctions. - Science, 2003, vol. 301, p. 1221.
- Carrol R.L., Gorman C.B. The Genesis of Molecular Electronics. - Angew. Chem. Int. Ed., 2002, vol. 41, p. 4378.
- Schon J.H., Bao Z. Nanoscale organic transistors based on self-assembled monolayers. - Appl. Phys. Lett., 2002, vol. 80, p. 847.
- Jacoby M. Nanoscale Electronics. - C&EN, September 30, 2002, p. 38.
- Tour J.M. et al. Nanocell electronic memory. - J. Am. Chem. Soc., 2003, vol. 125, p. 13279.
- Likharev K, Mayr A, Muckra I, Türel Ö. Cross-Nets. High-performance neuromorphic architectures for CMOL circuits. - Annals of New York Acad. Sci., 2003, vol. 1006, p. 146.
- Turel O., Hoon J., Ma X., Likharev K. Neuromorphic architectures for nanoelectronic circuits?. - Int. J. of Circuit Theor. Appl., available online at http://www.physics.sunysb.edu/ rsfq1~likharev/index.html: CMOL: Devices, Circuits, and Architecture by K. Likharev and D. Strukov.
- Strukov D., Likharev K. Prospects for Terabit-scale Nanoelectronic memories. And Likharev K. CMOL: A new concept for nanoelectronics. - Invited talks at the 12th Int. Symp. on Nanostructures: Physics and Technology (St. Petersburg, Russia, June 2004); extended abstract available online at http://rsfq1.physics.sunysb.edu/~likharev/nano/SPb.pdf.
- Chen Y. et al. Nanoscale molecular-switch crossbar circuits. - Nanotechnology, April 2003, vol. 14, pp. 462 - 468.
- Zhong Z. et al. Nanowire crossbar arrays as address decoders for integrated nanosystems. - Science, Nov. 2003, vol. 302, pp. 1377 - 1379.
- Li C. et al. Multilevel memory based on molecular devices. - Appl. Phys. Lett., March 2004, vol. 84, p. 1949.
- Khomutov G. B., Gainutdinov R. V., Gubin S. P. et al. Organized planar nanostructures from ligand-stabilized nanoclasters: a route to molecular nanoelectronics devices. - Appl. Surf. Sci., 2004, vol. 226, p. 149.
- Krupenin V.A., Lotkhov S.V., Presnov D.E. Instability of single-electron memory at low temperatures in Al/AlOx/Al structures. - JETP, 1997, vol. 84 (1), p. 190.
- Wolf H., Ahlers F.-J., Niemeyer J. et al. Investigation of the offset charge noise in single electron tunneling devices. - IEEE Trans. Instrum. and Meas., 1997, vol. 46 (2), p. 303.
- Yang, et al. Fabrication of molecular electronic circuits by nanoimprint lithography at low temperatures and pressures. - Appl. Phys. A, 2004, vol. 78, p. 1169.
- Crooker A., Hollingsworth J.A., Tretiak S., Klimov V.I. Spectrally Resolved Dynamics of Energy Transfer in Quantum-Dot Assemblies: Toward Engineered Energy Flows in Artificial Materials. - Phys. Rev. Lett., October 2002, vol. 89, p. 186802-1/4.
- Okava Y., Aono M. Nanoscale controlled chain polymerization. - In Abstr. of 7th Int. Conf. on (ACSIN-7), Nara, Japan, November 16 - 20, 2003.
- Dong Z.-C., Guo X.-L., Trifonov A. S. Vibrationally Resolved Fluorescence from Organic Molecules near Metal Surfaces in a Scanning Tunneling Microscope. - Phys. Rev. Lett., 2004, vol. 92(8), p. 086801.
- Hu W., Sarvesvaran K., Lieberman M., Bernstein G.H. Sub-10 nm electron beam lithography using cold development of poly(methylmethacrylate). - J. Vac. Sci. Techn. B, 2004, vol. 22, p. 1711.
- Okava Y., Aono M. Linear chain polymerization initiated by a scanning tunneling microscope tip at designated positions. - J. Chem. Phys., 2001, vol. 115, p. 2317.
- Tao, Kim F., Hess C., Goldberger J. et al. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. - Nano Lett., 2003, vol. 3, p. 1229.
- Shorokhov V.V., Soldatov E. S., Snigirev O. V. Theoretical Study of the Characteristics of Molecular Single-Electron Transistor. - Thin Solid Films, 2004, vol. 464 - 465, pp. 445 - 451.
- Kislov V.V., Guljaev Yu.V., Kolesov V.V. et al. Electronics of molecular nanoclusters. - Int. Journ. of Nanoscience, 2004, vol. 3, p. 137.
- Murray C.B., Norris D.J., Bawendi M.G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. - J. Am. Chem. Soc., 1993, vol. 115, p. 8706.
- Nirmal M., Brus L. Luminescence Photophysics in Semiconductor Nanocrystals. - Acc. Chem. Res., 1999, vol. 32, pp. 407 - 414.
- Ge C., Xu M., Liu J. et al. Facile synthesis and application of highly luminescent CdTe quantum dots with an electrogenerated precursor. - Chem. Commun., 2008, pp. 450-452.
- Zhang H., Wang D., Hartmann J., Mohwald H. Environment-Induced Structure Change of As-Prepared Aqueous CdTe Nanocrystals. - J. Phys. Chem. C, 2007, vol. 111, pp. 9678 - 9683.
- Kumar S., Nann T. Shape Control of II-VI Semiconductor Nanomaterials. - Small, 2006, vol. 2, no.3, pp. 316 - 329.
- Wu D., Kordesch M.E., Van Patten P.G. A New Class of Capping Ligands for CdSe Nanocrystal Synthesis. - Chem. Mater., 2005, vol. 17, pp. 6436 - 6441.
- Zhang T.L., Xia Y.S., Diao X.-L., Zhu C.-Q. Preparation and formation mechanism of strong violet luminescent CdS quantum dots by using a ligand exchange strategy. - Journal of Nanoparticles Research, 2008, vol. 10, pp. 59 - 67.
- Liu W., Choi H.S., Zimmer J.P. et al. Compact Cysteine-Coated CdSe(ZnCdS) Quantum Dots for in Vivo Applications. - J. Am. Chem. Soc., 2007, vol. 129, pp. 14530-14531.
- Chin P.T.K., de Mello Donega C., van Bavel S.S. et al. Highly Luminescent CdTe/CdSe Colloidal Heteronanocrystals with Temperature-Dependent Emission Color. - J. Am. Chem. Soc., 2007, vol. 129, pp. 14880 - 14886.
- Jasieniak J., Mulvaney P. From Cd-Rich to Se-Rich - the manipulation of CdSe Nanocrystal Surface Stoichiometry. - JACS, 2007, vol. 129, pp. 2841 - 2828.
- Han L., Qui D., Jiang X. et al. Synthesis of high quality zinc-blende CdSe nanocrystals and their applications in hybrid solar cells. - Nanotechnology, 2006, vol. 17, pp. 4736 - 4742.
- Shi J., Qin Y., Wu W. et al. In situ synthesis of CdS nanoparticles on multi-walled carbon nanotubes. - Carbon, 2004, vol. 42, pp. 455 - 460.