350 rub
Journal Nanotechnology : the development , application - XXI Century №1 for 2009 г.
Article in number:
Current Trends in Development of the Post-CMOS Era Electronics
Keywords:
Authors:
O.V. Snigirev, E.S. Soldatov, V.A. Krupenin, S.P. Gubin, V.V. Kolesov, G.B. Khomutov, V.V. Shorokhov, A.S. Trifonov, D.E. Presnov, D. Baranov
Abstract:
Current trends in development of the elemental base of the information media with characteristic size of elements of about 10 nm and less are described. Data on current state of the development of single-electron-devices for information media are given. The first experimental steps toward fabrication of the first hybrid structures, combining together semiconductor (CMOS) and molecular (CMOL) electronics are presented. The possibility to use an electroluminescence of single molecules and quantum dots for information transport in the information nanomedia is discussed
Pages: 43-56
References
- John Markoff. - New York Times, May 17, 2004.
- Fichthorn K., Scheffler M. - Nature, 2004, vol. 429, p. 617.
- Jackson A.M., Myerson J.W., Stellacci F. - Nature Materials, 2004, vol. 3, p. 330.
- Alivisatos A.P. Semiconductors clusters, nanocrystals and quantum dots. - Science, 1996, vol. 271, p. 933.
- Colvin V. L., Goldstein A. N., Alivisatos A. P. Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers. - J. Am. Chem. Soc., 1992, vol. 114, p. 5221.
- http://www.smalltimes.com/print_doc.cfm-doc_id-7735.
- Roco M.C. The future of national nanotechnology initiative. - http://nano.gov.
- International Technology Roadmap for Semiconductors. - Available on line at, http://public.itrs.net/.
- Flood A.H., Stoddart J.F., Steurman D.W., Heath J.R. Whence molecular electronics. - Science, 2004, vol. 306, p. 2055.
- Hassan M.H.A. Small things and big changes in the developing word. - Science, 2005, vol. 309, p.65.
- Soldatov E.S., Khanin V.V., Trifonov A.S., et al. Single-electron transistor based on a single cluster molecule at room temperature. - JETP Lett., 1996, vol. 64, p. 556.
- Park J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. - Nature, June 2002, vol. 417, p. 722.
- Kubatkin S. et al. Single-electron transistor of a single organic molecule with access to several redox states. - Nature, 2003, vol. 425, p. 698.
- Visconti P. et al. The fabrication of sub-10nm planar electrodes and their use for a molecule-based transistor. - Nanotechnology, 2004, vol. 15, p. 807.
- Nagase T., Kubota T., Mashiko S. Fabrication of nanogap electrodes for measuring electrical properties of organic molecules using a focused ion beam. - Thin Solid Films, 2003, vol. 438 - 439, pp. 374 - 377.
- Xu B., Tao N.J. Measurements of single-molecule resistance by repeated formation of molecular junctions. - Science, 2003, vol. 301, p. 1221.
- Carrol R.L., Gorman C.B. The Genesis of Molecular Electronics. - Angew. Chem. Int. Ed., 2002, vol. 41, p. 4378.
- Schon J.H., Bao Z. Nanoscale organic transistors based on self-assembled monolayers. - Appl. Phys. Lett., 2002, vol. 80, p. 847.
- Jacoby M. Nanoscale Electronics. - C&EN, September 30, 2002, p. 38.
- Tour J.M. et al. Nanocell electronic memory. - J. Am. Chem. Soc., 2003, vol. 125, p. 13279.
- Likharev K, Mayr A, Muckra I, Türel Ö. Cross-Nets. High-performance neuromorphic architectures for CMOL circuits. - Annals of New York Acad. Sci., 2003, vol. 1006, p. 146.
- Turel O., Hoon J., Ma X., Likharev K. Neuromorphic architectures for nanoelectronic circuits?. - Int. J. of Circuit Theor. Appl., available online at http://www.physics.sunysb.edu/ rsfq1~likharev/index.html: CMOL: Devices, Circuits, and Architecture by K. Likharev and D. Strukov.
- Strukov D., Likharev K. Prospects for Terabit-scale Nanoelectronic memories. And Likharev K. CMOL: A new concept for nanoelectronics. - Invited talks at the 12th Int. Symp. on Nanostructures: Physics and Technology (St. Petersburg, Russia, June 2004); extended abstract available online at http://rsfq1.physics.sunysb.edu/~likharev/nano/SPb.pdf.
- Chen Y. et al. Nanoscale molecular-switch crossbar circuits. - Nanotechnology, April 2003, vol. 14, pp. 462 - 468.
- Zhong Z. et al. Nanowire crossbar arrays as address decoders for integrated nanosystems. - Science, Nov. 2003, vol. 302, pp. 1377 - 1379.
- Li C. et al. Multilevel memory based on molecular devices. - Appl. Phys. Lett., March 2004, vol. 84, p. 1949.
- Khomutov G. B., Gainutdinov R. V., Gubin S. P. et al. Organized planar nanostructures from ligand-stabilized nanoclasters: a route to molecular nanoelectronics devices. - Appl. Surf. Sci., 2004, vol. 226, p. 149.
- Krupenin V.A., Lotkhov S.V., Presnov D.E. Instability of single-electron memory at low temperatures in Al/AlOx/Al structures. - JETP, 1997, vol. 84 (1), p. 190.
- Wolf H., Ahlers F.-J., Niemeyer J. et al. Investigation of the offset charge noise in single electron tunneling devices. - IEEE Trans. Instrum. and Meas., 1997, vol. 46 (2), p. 303.
- Yang, et al. Fabrication of molecular electronic circuits by nanoimprint lithography at low temperatures and pressures. - Appl. Phys. A, 2004, vol. 78, p. 1169.
- Crooker A., Hollingsworth J.A., Tretiak S., Klimov V.I. Spectrally Resolved Dynamics of Energy Transfer in Quantum-Dot Assemblies: Toward Engineered Energy Flows in Artificial Materials. - Phys. Rev. Lett., October 2002, vol. 89, p. 186802-1/4.
- Okava Y., Aono M. Nanoscale controlled chain polymerization. - In Abstr. of 7th Int. Conf. on (ACSIN-7), Nara, Japan, November 16 - 20, 2003.
- Dong Z.-C., Guo X.-L., Trifonov A. S. Vibrationally Resolved Fluorescence from Organic Molecules near Metal Surfaces in a Scanning Tunneling Microscope. - Phys. Rev. Lett., 2004, vol. 92(8), p. 086801.
- Hu W., Sarvesvaran K., Lieberman M., Bernstein G.H. Sub-10 nm electron beam lithography using cold development of poly(methylmethacrylate). - J. Vac. Sci. Techn. B, 2004, vol. 22, p. 1711.
- Okava Y., Aono M. Linear chain polymerization initiated by a scanning tunneling microscope tip at designated positions. - J. Chem. Phys., 2001, vol. 115, p. 2317.
- Tao, Kim F., Hess C., Goldberger J. et al. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. - Nano Lett., 2003, vol. 3, p. 1229.
- Shorokhov V.V., Soldatov E. S., Snigirev O. V. Theoretical Study of the Characteristics of Molecular Single-Electron Transistor. - Thin Solid Films, 2004, vol. 464 - 465, pp. 445 - 451.
- Kislov V.V., Guljaev Yu.V., Kolesov V.V. et al. Electronics of molecular nanoclusters. - Int. Journ. of Nanoscience, 2004, vol. 3, p. 137.
- Murray C.B., Norris D.J., Bawendi M.G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. - J. Am. Chem. Soc., 1993, vol. 115, p. 8706.
- Nirmal M., Brus L. Luminescence Photophysics in Semiconductor Nanocrystals. - Acc. Chem. Res., 1999, vol. 32, pp. 407 - 414.
- Ge C., Xu M., Liu J. et al. Facile synthesis and application of highly luminescent CdTe quantum dots with an electrogenerated precursor. - Chem. Commun., 2008, pp. 450-452.
- Zhang H., Wang D., Hartmann J., Mohwald H. Environment-Induced Structure Change of As-Prepared Aqueous CdTe Nanocrystals. - J. Phys. Chem. C, 2007, vol. 111, pp. 9678 - 9683.
- Kumar S., Nann T. Shape Control of II-VI Semiconductor Nanomaterials. - Small, 2006, vol. 2, no.3, pp. 316 - 329.
- Wu D., Kordesch M.E., Van Patten P.G. A New Class of Capping Ligands for CdSe Nanocrystal Synthesis. - Chem. Mater., 2005, vol. 17, pp. 6436 - 6441.
- Zhang T.L., Xia Y.S., Diao X.-L., Zhu C.-Q. Preparation and formation mechanism of strong violet luminescent CdS quantum dots by using a ligand exchange strategy. - Journal of Nanoparticles Research, 2008, vol. 10, pp. 59 - 67.
- Liu W., Choi H.S., Zimmer J.P. et al. Compact Cysteine-Coated CdSe(ZnCdS) Quantum Dots for in Vivo Applications. - J. Am. Chem. Soc., 2007, vol. 129, pp. 14530-14531.
- Chin P.T.K., de Mello Donega C., van Bavel S.S. et al. Highly Luminescent CdTe/CdSe Colloidal Heteronanocrystals with Temperature-Dependent Emission Color. - J. Am. Chem. Soc., 2007, vol. 129, pp. 14880 - 14886.
- Jasieniak J., Mulvaney P. From Cd-Rich to Se-Rich - the manipulation of CdSe Nanocrystal Surface Stoichiometry. - JACS, 2007, vol. 129, pp. 2841 - 2828.
- Han L., Qui D., Jiang X. et al. Synthesis of high quality zinc-blende CdSe nanocrystals and their applications in hybrid solar cells. - Nanotechnology, 2006, vol. 17, pp. 4736 - 4742.
- Shi J., Qin Y., Wu W. et al. In situ synthesis of CdS nanoparticles on multi-walled carbon nanotubes. - Carbon, 2004, vol. 42, pp. 455 - 460.