350 руб
Журнал «Нанотехнологии: разработка, применение - XXI век» №1 за 2009 г.
Статья в номере:
Применение кластерных ионов в нанотехнологии
Авторы:
А.А. Андреев, Ю.А. Ермаков, А.С. Патракеев, В.С. Черныш - ОАО «ТЕНЗОР», Москва, Россия, НИИЯФ МГУ, Москва, Россия. Физический факультет МГУ им. М.В. Ломоносова. E-mail: AAA@msk.org.ru; yuriermak@yandex.ru; patran@phys.msu.ru; chernysh@phys.msu.ru
Аннотация:
Рассмотрена история развития исследований, связанных с получением пучков газовых кластерных ионов. Обсуждены физические принципы формирования пучков газовых ионов. Рассмотрены свойства пучков кластерных ионов, и кратко описана аппаратура для исследования взаимодействия газовых кластерных ионов с поверхностью твердых тел. Представлен обзор исследований по распылению поверхности под действием бомбардировки кластерными ионами. Показано, что основные характеристики распыления кластерными ионами сильно отличаются от распыления ионами мономеров. Приведены примеры применения кластерных ионов для модификации свойств поверхности твердых тел и пленок. Обсужден новый метод имплантации материала на малые глубины, основанный на использовании газовых кластерных ионов. Продемонстрировано, что пучки кластерных ионов открывают новые перспективы в современных нанотехнологиях, связанных с полировкой поверхности материалов и нанесением тонких пленок
Страницы: 23-39
Список источников
  1. Елецкий А.В., Смирнов Б.М. Свойства кластерных ионов. - УФН, 1989, т. 159, с. 45.
  2. Clusters of atoms and molecules, Springer Series in Chemical Physics, Berlin, Heidelberg, Springer-Verlag, 1994. vol. 52.
  3. Макаров Г.Н. Экстремальные процессы в кластерах при столкновении с твердой поверхностью. - УФН, 2006, т. 176, с. 121.
  4. Jacquet D., Le Beyec Y. Cluster impacts on solids. - Nucl. Instrum. Meth. Phys. Res. B, 2002, vol. 193, p. 227.
  5. Brown W.L., Sosnowski M. Cluster-solid interaction experiments. - Nucl. Instr. Meth. Phys. Res. B, 1995, vol. 102, p. 305.
  6. Popok V.N., Prasalovich S.V. and Campbell E.E.B. New direction in nanotechnology: cluster ion beam technique. Proceedings of the 13th International Conference - Microwave & Telecommunication Technology - 2003, Sevastopol, Ukraine, p. 253.
  7. Di Vece M., Palomba S., and Palmer R. E. Pinning of size-selected gold and nickel nanoclusters on graphite. - Phys.Revol. B, 2005, vol. 72, p. 073407.
  8. Smith R., Nock C., Kenny S. D., Belbruno J. J., Di Vece M., Palomba S., and Palmer R. E. Modeling the pinning of Au and Ni clusters on graphite. - Phys. Revol. B, 2006, vol. 73, p. 125429.
  9. Yamada I. Proceedings of the 14th Symp. on Ion Sources and Ion-Assisted Technology, Tokyo, The Ion Engineering Society of Japan. - Tokyo, 1991, p. 227.
  10. Yamada I. A short review of ionized cluster beam technology. - Nucl. Instr. and Meth. In Phys. Res. B, 1995, vol. 99, p. 240.
  11. Yamada I., Matsuo J., Toyoda N. Cluster ion beam process technology. - Nucl. Instr. and Meth. in Phys. Res. B, 2003, vol. 206, p. 820.
  12. Yamada I. Novel materials processing and applications by gas cluster ion beams. - Eur. Phys. J. D, 1999, vol. 9, p. 55.
  13. Sugii T., Momiyama Y., Goto K. Continued growth in CMOS beyond 0.10 μm. - Solid-State Electronics, 2002, vol. 46, p. 329.
  14. Kantrowitz A., Grey J. A High Intensity Source for the Molecular Beam. Part I. Theoretical. - Revol. Sci. Instrum., 1951, vol. 22, p. 328.
  15. Kistiakowsky G.B., Slichter W.P. A High Intensity Source for the Molecular Beam. Part II. Experimental. - Revol. Sci. Instrum., 1951, vol. 22, p. 333.
  16. Becker E.W., Bier K., Henkes W.. Condensed Atomic and Molecular Beam in Highvacuum. - Z. Phys., 1956, vol. 146, p. 333.
  17. Becker E.W., On the History of Cluster Beams. - Z. Phys. D: At., Mol. Clusters, 1986, vol. 3, p. 101.
  18. Henkes W., Ionization and Acceleration of Condensed Molecular Beams. - Z. Naturforsch., 1961, vol. 16a, p. 842.
  19. Bentley P. G. Polymers of Carbon Dioxide. - Nature, 1961, vol. 190, p. 432.
  20. Hagena O.F., Obert W. Cluster Formation in Expanding Supersonic Jets: Effect of Pressure, Temherature, Nozzle Size, and Test Gas. - J. Chem. Phys., 1972, vol. 56, p. 1793.
  21. Hagena O.F. Nucleation and Growth of Clusters in Expanding Nozzle Flows. - Surf. Sci., 1981, vol. 106, p. 101.
  22. Hagena O.F. Condensation in Free-Jets: Comparison of Rare Gases and Metals. - Z. Phys. D, 1987, vol. 4, p. 291.
  23. Востриков А.А., Куснер Ю.С., Ребров А.К., Семячкин Б.Е. Получение интенсивного молекулярного пучка CO2 газодинамическим методом. - ЖПМТФ, 1975, №2, с. 34.
  24. Востриков А.А., Ребров А.К., Семячкин Б.Е. Конденсация SF6, CF2Cl2 и CO2 в расширяющихся струях. - ЖТФ, 1980, т. 50, с. 2425.
  25. Vostrikov А.А., Mironov S.G., Rebrov А.К., Semyachkin B.E. Molecular clusters: formation in free expansion and with vibrational energy pumping; cluster-surface interaction. - Surf. Sci., 1981, vol. 106, p. 212.
  26. Востриков А.А., Дубов Д.Ю., Предтеченский М.Р. Образование заряженных частиц при столкновении кластеров воды с поверхностью. - ЖТФ, 1988, т. 58, с. 1897.
  27. Востриков А.А., Дубов Д.Ю., Самойлов И.В. Масс-спектро¬метрические наблюдения малых кластеров азота. - ЖТФ, 1994, т. 64, с. 120.
  28. Седов Л.И. Механика сплошной среды. - 1984, т. 2.
  29. Crist S., Sherman P.M. and Glass D.R. Study of the Highly Underexpanded Sonic Jet. - AIAA J., 1966, vol. 4, p. 68.
  30. Bier V.K., Schmidt B. The Form of Compression-Waves in a Expanding Free Gas Jet. - Z. Angew. Phys., 1961, vol. 13, p. 493.
  31. Tejeda G., Mat´e B., Fern´andez-S´anchez J.M., Montoro S. Temperature and Density Mapping of Supersonic Jet Expansions Using Linear Raman Spectroscopy. - Phys. Revol. Lett., 1996, vol. 76, p. 34.
  32. Haberland H., Buck U., Tolle M. Velocity distribution of supersonic nozzle beams. - Revol. Sci. Instrum., 1985, vol. 56, p. 1712.
  33. Ashkenas H., Sherman F.S. The structure and Utilization of Supersonic Free Jets in Low Density Wind Tunnels, Rarefield Gas Dynamics. Proc. of the 4th International Symposium on Rarefield Gas Dynamics. Edit. J.H. de Leeuw, Academic Press, New York, 1965-1966, p.85.
  34. Hagena O.F. Cluster ion sources (invited). - Revol. Sci. Instr., 1992, vol. 63, p. 2374.
  35. Smith R.A., Ditmire T., Tisch J.W.G. Characterization of a cryogenically cooled high pressure gas jet for laser/cluster interaction experiments. - Revol. Sci. Instrum., 1998, vol. 69, p. 3798.
  36. Wörmer J., Guzielski V.,  Stapelfeldt J., Zimmerer G., Möller T. Optical Properties of Argon Clusters in the VUV. - Phys. Scr., 1990, vol. 40, p. 490.
  37. Seki T., Matsuo J., Takaoka G.H., Yamada I. Generation of the large current cluster ion beam. - Nucl. Instr. Meth. Phys. Res. B, 2003, vol. 206, p. 902.
  38. Scheier P., Mark T.D. Doubly charged argon clusters and their critical size. - J. Chem. Phys., 1986, vol. 86, p. 3056.
  39. Sattler K., Muhlbach J., Echt O., Pfau P., Recknagel E. Evidence for Coulomb Explosion of Doubly Charged Microclusters. - Phys. Revol. Lett., 1981, vol. 47, p. 160.
  40. Swenson D.R. Measurement of averages of charge, energy and mass of large, multiply charged cluster ions colliding with atoms. - Nucl. Instr. and Meth in Phys. Res. B, 2004, vol. 222, p. 61.
  41. Matsuo J., Minami E., Saito M., Toyoda N., Katsumata H., Yamada I. High-intensity oxygen cluster ion beam generation and its application to cluster ion-assisted deposition. - Eur. Phys. J., D, 1999, vol. 9, p. 635.
  42. Kakuta S., Seki T., Sasaki S., Furusava K., Aoki T., Matsou J. Size and energy distribution of gas cluster ion beam measured by energy resolved time of flight mass spectroscopy. - Surface and Coating Technology, 2005, vol. 196, p. 198.
  43. Toyoda N., Houzumi S., Yamada I. Development of a size-selected gas cluster ion beam system for low-damage processing. - Nucl. Instr. Meth. Phys. Res. B, 2005, vol. 241, p. 609.
  44. Takaoka G., Tsumura K., Yamamoto T. Development of Liquid Polyatomic Ion Beam System for Surface Modification. - Jpn. J. Appl. Phys., 2002, vol. 41, p. L660.
  45. Ohwaki K., Dake Y., Toyoda N., Yamada I. Development of a new cluster size selector. - Nucl. Instr. Meth. Phys. Res. B, 2005, vol. 241, p. 614.
  46. Popok V.N., Prasalovich S.V., Samuelsson M., Campbell E.E.B. Design and capabilities of a cluster implantation and deposition apparatus: First results on hillock formation under energetic cluster ion bombardment. - Revol. Sci. Instr., 2002, vol. 73, p. 4283.
  47. Song J.H., Kwon S.N., Choi D.K., Choi W.K. Assessment of an ionized CO2 gas cluster accelerator. - Nucl. Instr. Meth. Phys. Res. B, 2001, vol. 179, p. 568.
  48. Андреев А.А., Ермаков Ю.А., Патракеев А.С., Черныш В.С. Проект ускорителя газовых кластерных ионов. - Матер. 7-й Междунар. конференции «Взаимодействие излучений с твёрдым телом». Минск. 2007, с. 354.
  49. Seki T., Matsuo J. Development of 1 mA cluster ion beam source. - Nucl. Instr. Meth. Phys. Res. B. 2005, vol. 237, p. 455.
  50. Распыление твердых тел ионной бомбардировкой. Пер. с англ. Под ред. Р. Бериша. - М.:Мир,1984, 336 с.
  51. Распыление под действием бомбардировки частицами. Вып. III: Пер. с англ. / Под ред. Р. Бериша и К. Виттмака. - М.: Мир,1998.
  52. Sigmund. P. Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets. - Phys. Revol., 1969, vol. 184, p. 383.
  53. Matsuo J., Toyoda N., Akizuki M., Yamada I. Sputtering of elemental metals by Ar cluster ions. - Nucl. Instr. Meth. Phys. Res. B, 1997, vol. 121, p. 459.
  54. Yamada I., Brown W.L., Northby J.A., Sosnovsky M. Surface modification with gas cluster ion beams. - Nucl. Instr. Meth. Phys. Res. B, 1993, vol. 82, p. 223.
  55. Seki T., Murase T., Matsuo J. Cluster size dependence of sputtering yield by cluster ion beam irradiation. - Nucl. Instr. Meth. Phys. Res. B, 2006, vol. 242, p. 179.
  56. Плешивцев Н.В. Катодное распыление. - М.: Атомиздат, 1968.
  57. Toyoda N., Kitani H., Hagiwara N., Aoki T., Matsuo J., Yamada I. Angular distributions of the particles sputtered with Ar cluster ions. - Mater. Chem. Phys., 1998, vol. 54, p. 262.
  58. Ziegler J. F., Biersack J. P., Littmark U. The Stopping and Range of Ions in Solids. 1995. Pergamon, NewYork.
  59. Chernysh V.S., Ekstein W., Haidarov A.A., Kulikauskas V.S., Mashkova E.S., Molchanov V.A. Sputtering mechanisms of polycrystalline platinum by low energy ions. - Nucl. Instr. Meth. Phys. Res. B, 2000, vol. 160, p. 221.
  60. Sigmund Р. Mechanisms and theory of physical sputtering by particle impact. - Nucl. Instr. Meth. Phys. Res. B. 1987, vol. 27, p. 1.
  61. Chernysh V.S., Patrakeev A.S., Shulga V.I. Angular distribution of atoms sputtered from germanium by 1-20 keV Ar ions. - Radiation effects & Defects in solids, 2006, vol. 161, p. 701.
  62. Insepov Z., Yamada I. Molecular dynamics study of shock wave generation by cluster impact on solid targets. - Nucl. Instr. Meth. Phys. Res. B, 1996, vol. 112, p. 16.
  63. Yamada I., Matsuo J., Insepov Z., Aoki T., Seki T., Toyoda N. Nano-processing with gas cluster ion beams. - Nucl. Instr. Meth. Phys. Res. B, 2000, vol. 164 - 165, p. 944.
  64. Takeuchi D., Fukushima K., Matsuo J., Yamada I. Study of Ar cluster ion bombardment of a sapphire surface. - Nucl. Instrum. Meth. Phys. Res. B, 1997, vol. 121, p. 493.
  65. Allen L.P., Fenner D.B., Santeufemio C., Brooks W., Hautala J., Shao Y. Proceedings of the SPIE International Symposium on Optical Science and Technology, 7-11 July 2002, Seattle, WA, vol. 4806, p. 225.
  66. Allen L. P., Insepov Z., Fenner D. B., Santeufemio C., Brooks W., Jones K. S., Yamada I. Craters on silicon surfaces created by gas cluster ion impacts. - J. Appl. Phys., 2002, vol. 92, p. 3671.
  67. Popok V.N., Prasalovich V.S., Campbell E.E.B. Nanohillock formation by impact of small low-energy clusters with surfaces. - Nucl. Instrum. Meth. B, 2003, vol. 207, p. 145.
  68. Samela J., Nordlund K., Keinonen J., Popok V. N., Campbell E.E.B. Origin of complex impact craters on native oxide coated silicon surfaces. - Phys. Revol., 2008, vol. 77, p. 075309.
  69. Beuhler R.J., Friedlander G., Friedman L. Cluster-impact fusion. - Phys. Revol. Lett., 1989, vol. 63, p. 1292.
  70. Bae Y. K., Lorents D.C., Young S.E. Experimental confirmation of cluster-impact fusion. - Phys. Revol. A, 1991, vol. 44, p. R4091.
  71. Fallavier M., Kemmler J., Kirsch R., Poizat J. C., Remillieux J., Thomas J. P. Search for nuclear fusion in deuterated targets under cluster-beam impact. - Phys. Revol. Lett., 1990, vol. 65, p. 621.
  72. Matsuo J., Okubo C., Seki T., Aokia T., Toyoda N., Yamada I. A new secondary ion mass spectrometry (SIMS) system with high-intensity cluster ion source. - Nucl. Instr. Meth. Phys. Res. B, 2004, vol. 219 - 220, p. 463.
  73. Yamada I., Matsuo J., Toyoda N., Kirpatrick A. Material processing by gas cluster ion beam. - Mater. Sci. and Engineer., 2001, vol. R 34, p. 231.
  74. Kirkpatrick A. Gas cluster ion beam applications and equipment. - Nucl. Instr. Meth. Phys. Res. B, 2003, vol. 206, p. 830.
  75. Bradley R.M., Harper J.M.E. Theory of ripple topography induced by ion bombardment. - J. Vac. Sci. Technol. A, 1988, vol. 6, p. 2390.
  76. Kitani H., Toyoda N., Matsuo J., Yamada I. Incident angle dependence of the sputtering effect of Ar-cluster-ion bombardment. - Nucl. Instr. Meth. Phys. Res. B, 1997, vol. 121, p. 489.
  77. Yamada I., Toyoda N. Recent advances in R&D of gas cluster ion beam processes and equipment. - Nucl. Instr. Meth. Phys. Res. B, 2005, vol. 241, p. 589.
  78. Takaoka G.H., Noguchi H., Kawashita M. Interactions of ethanol cluster ion beams with silicon surfaces. - Nucl. Instr. Meth. Phys. Res. B, 2006, vol. 242, p. 417.
  79. MacDonald R.J. Temperature dependence of the sputtered ejection pattern from Ge [100] surfaces. - Phys. Lett. A, 1969, vol. 29, p. 256.
  80. Northby J.A., Jiang T., Takaoka G.H., Yamada I., Brown W.L., Sosnowsky M. A method and apparatus for surface modification by gas-cluster ion impact. - Nucl. Instr. Meth. Phys. Res. B, 1993, vol. 74, p. 336.
  81. Nakayama Y., Houzumi S., Toyoda N., Mochji K., Mitamura T., Yamada I. Irradiation of silicon surface by Ar cluster ion beam: Cluster size effects. - Nucl. Instr. Meth. Phys. Res. B, 2005, vol. 241, p. 618.
  82. Takaoka G.H., Shimatani H., Noguchi H., Kawashita M. Interactions of argon cluster ion beams with silicon surfaces. - Nucl.Instr. Meth. Phys. Res. B, 2005, vol. 232, p. 206.
  83. Copel M. Medium-energy ion scattering for analysis of microelectronic materials. - IBM Journ. Res. Develop., 2000, vol. 44, p. 571.
  84. Jacobson D. Using Boron Cluster Ion Implantation to Fabricate Ultra-Shallow Junctions. Ext. Abs. the 5th Intern. Workshop on Junction Technol., 2005, Osaka, Japan, p. 23.
  85. Borland J., Hautala J., Gwinn M., Tetreault T.G., Skinner W. USJ and straned-Si formation using infusion doping and deposition. - Sol. State Technol., 2004, vol. 47, p. 64.
  86. MacCrimmon R., Hautala J., Gwinn M., Sherman S. Gas cluster ion beam infusion processing of semiconductors. - Nucl. Instr. Meth. Phys. Res. B, 2006, vol. 242, p. 427.
  87. Betz G., Husinsky W. A combined molecular dynamics and kinetic Monte Carlo calculation to study sputter erosion and beam assisted deposition. - Nucl. Instr. Meth. Phys. Res. B, 2002, vol. 193, p. 352.
  88. Fujiwara Y., Toyoda N., Mochiji K., Mitamura T., Yamada I. Reduction of surface roughness by Ta2O5 film formation with O2 cluster ion assisted deposition. - Nucl. Instr. Meth. Phys. Res. B, 2003, vol. 206, p. 870.
  89. Takaoka G.H., Kawashita M., Omoto K., Terada T. Photocatalytic properties of TiO2 films prepared by O2 cluster ion beam assisted deposition method. - Nucl. Instr. Meth. Phys. Res. B, 2005, vol. 232, p. 200.
  90. Toyoda N., Matsuo J., Yamada I. Surface modification with gas cluster ion beams from fundamental characteristics to applications. - Nucl. Instr. Meth. Phys. Res. B, 2004, vol. 216, p. 379.