350 руб
Журнал «Наноматериалы и наноструктуры - XXI век» №2 за 2015 г.
Статья в номере:
Доменная нанотехнология в монокристаллах семейства ниобата лития и танталата лития
Авторы:
В.Я. Шур - д.ф.-м.н., профессор, директор УЦКП «Современные нанотехнологии», Уральский федеральный университет. E-mail: vladimir.shur@urfu.ru
Аннотация:
Представлен обзор достижений в доменной нанотехнологии на примере кристаллов семейства ниобата лития и танталата лития. Образование нанодоменных структур исследовалось с использованием современных методов визуализации доменов с высоким пространственным разрешением. Рассмотрены физические основы нанодоменной инженерии, которая базируется на определяющей роли нанодоменов в формировании доменной структуры при сильнонеравновесных условиях переключения. Результаты позволили создать кристаллы с регулярной доменной структурой для преобразования длины волны лазерного излучения с высокой эффективностью.
Страницы: 38-45
Список источников

 

  1. Shur V.Ya. Nano- andmicro-domain engineeringinnormalandrelaxorferroelectrics // Handbook of advanced dielectric, piezoelectric and ferroelectric materials. Synthesis, properties and applications / Ed. by Z.-G. Ye. Woodhead Publishing Ltd. 2008. Р. 622-669.
  2. Shur V.Ya. Domain nanotechnology in ferroelectrics: nano-domain engineering in lithium niobate crystals // Ferroelectrics. 2008. V. 373. Р. 1-10.
  3. Shur V.Ya. Domain nanotechnology in lithium niobate and lithium tantalate crystals // Ferroelectrics. 2010. V. 399. Р. 97-106.
  4. Shur V.Ya. Correlated nucleation and self-organized kinetics of ferroelectric domains // Nucleation theory and applications / Ed. by J.W.P. Schmelzer. WILEY-VCH. Weinheim. 2005. Ch. 6. Р. 178-214.
  5. Shur V.Ya. Kinetics of polarization reversal in normal and relaxor ferroelectrics: relaxation effects//Phase Transitions. 1998. V. 65. Р. 49-72.
  6. Shur V.Ya.,Rumyantsev E.L., Nikolaeva E.V., et al.Formation of self-organized nanodomain patterns during spontaneous backswitching in lithium niobate // Ferroelectrics. 2001. V. 253. Р. 105-114.
  7. Shur V.Ya.,Rumyantsev E.L., Nikolaeva E.V., et al.Nanoscale backswitched domain patterning in lithium niobate. //Appl. Phys. Lett.2000. V. 76. N. 2. Р. 143-145.
  8. Shur V.Ya, Shishkin E., Rumyantsev E., et al. Self-organization in LiNbO3 and LiTaO3: Formation of micro- and nano-scale domain patterns. //Ferroelectrics. 2004. V. 304. Р. 111-116.
  9. Shur V.Ya. Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3 //Journal of Materials Science. 2006. V. 41. Р. 199-210.
  10. Dolbilov M.A., Shur V.Ya., Shishkin E.I., et al. Influence of surface layers modified by proton exchange on domain kinetics of lithium niobate //Ferroelectrics. 2008. V. 374. Р. 14-19.
  11. Shur V.Ya., Kuznetsov D.K., Lobov A.I., et al., Formation of self-similar surface nano-domain structures in lithium niobate under highly nonequilibrium conditions// Ferroelectrics. 2006. V. 341. Р. 85-93.
  12. Kuznetsov D.K., Shur V.Ya., Negashev S.A., et al. Formation of nano-scale domain structures in lithium niobate using high-intensity laser irradiation// Ferroelectrics. 2008. V. 373. Р. 133-138.
  13. Shur V.Ya., Kuznetsov D.K., Lobov A.I., et al. Self-similar surface nanodomain structures induced by laser irradiation in lithium niobate //Phys. Solid State. 2008. V. 50. N. 4. Р. 717-723.
  14. Zelenovskiy P.S., Fontana M.D., Shur V.Ya., et al.Raman visualization of micro- and nanoscale domain structures in lithium niobate. //Appl. Phys. A. 2010.V. 99.Р. 741-744.
  15. Shur V.Ya., Shishkin E.I., Nikolaeva E.V., et al. Study of nanoscale domain structure formation using Raman confocal microscopy //Ferroelectrics. 2010. V. 398. Р. 91-97.
  16. Armstrong J.A., Bloembergen N., Ducuing J., et al. Interactions between light waves in a nonlinear dielectric// Phys. Rev.1962. V. 127. Р. 1918-1939.
  17. Byer R.L.Quasi-phasematched nonlinear interactions and devices. // J. Nonlinear Opt. Phys. Mater. 1997.V. 6. Р. 549-592.
  18. Hum D.S., Fejer M.M.Quasi-phasematching // C. R. Phys.2007. V. 8. Р. 180-198.
  19. Batchko R.G., Shur V.Y., Fejer M.M., Byer R.L. Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation //Appl. Phys. Lett.1999. V. 75. Р. 1673-1675.
  20. Batchko R.G., Fejer M.M., Byer R.L., Woll D., Wallenstein R., Shur V.Ya., Erman L. Continuous-wave quasi-phase-matched generation of 60 mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate //Opt. Lett.1999. V.24. N. 18. Р. 1293-1295.
  21. Harris S.E. Proposed backward wave oscillation in the infrared // Appl. Phys. Lett.1966.V. 9. N. 3. Р. 114-116.
  22. Canalias C., Pasiskevicius V., Fokine M., et al. Backward quasi-phase-matched second-harmonic generation in submicrometer periodically poled flux-grown KTiOPO4//Appl. Phys. Lett.2005. V. 86. Р. 181105.
  23. Canalias C., Pasiskevicius V. Mirrorless optical parametric oscillator //Nat. Photonics. 2007. V. 1. Р. 459-462.
  24. 24 Gallo K., Assanto G., Parameswaran K.R., et al. All-optical diode in a periodically poled lithium niobate waveguide // Appl. Phys. Lett. 2001. V. 79. Р. 314-316.
  25. Seidel J., Martin L.W., He Q.,et al. Conduction at domain walls in oxide multiferroics // Nat. Mater.2009. V. 8. Р. 229-234.
  26. Sugita T., Mizuuchi K., Kitaoka Y., et al. Ultraviolet light generation in a periodically poled MgO: LiNbO3 waveguide// Jpn. J. Appl. Phys.2001.V. 40. Р. 1751-1753.
  27. Kintaka K., Fujimura M., Suhara T., Nishihara H. Efficient ultraviolet light generation by LiNbO3 waveguide first-order quasi-phase-matched second-harmonic generation devices // Electron. Lett. 1996.V. 32. Р. 2237-2238.
  28. Mizuuchi K., Yamamoto K. Harmonic blue light generation in bulk periodically poled LiTaO3// Appl. Phys. Lett.1995. V. 66. Р. 2943-2945.
  29. Kuz-minov Yu.S.Lithium niobate crystals. Cambridge. 1997. Р. 254.
  30. Shur V.Ya., Lobov A.I., Shur A.G., et al. Rearrangement of ferroelectric domain structure induced by chemical etching // Appl. Phys. Lett.2005.V. 87. N. 2. Р. 022905.
  31. Shur V.Ya., Zelenovskiy P.S., Nebogatikov M.S., Alikin D.O., et al. Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO3 and LiTaO3 crystals // J. Appl. Phys. 2011. V. 110. Р. 052013-1-6.
  32. Shur V.Ya., Chezganov D.S., Nebogatikov M.S., et al. Formation of dendrite domain structures in stoichiometric lithium niobate at elevated temperatures //J. Appl. Phys. 2012. V. 112. Р. 104113-1-6.
  33. Fontana M.D., Hammoum R., Bourson P., et al. Raman probe on PPLN microstructures // Ferroelectrics. 2008. V. 373. Р. 26-31.
  34. 34 Hammoum R., Fontana M.D., Bourson P., et al. Raman micro-spectroscopy as a probe to investigate PPLN structures // Ferroelectrics. 2007. V. 352. Р. 106-110.
  35. 35 Hammoum R., Fontana M.D., Bourson P., et al. Characterization of PPLN-microstructures by means of Raman spectroscopy. // Appl. Phys.A. 2008. V. 91. Р. 65-67.
  36. Zelenovskiy P.S., Shur V.Ya., Bourson P., et al. Raman study of neutral and charged domain walls in lithium niobate // Ferroelectrics. 2010. V. 398. Р. 34-41.
  37. Eliseev E., Morozovska A., Svechnikov G., et al.Static conductivity of charged domain wall in uniaxial ferroelectric-semiconductors // Phys. Rev. B. 2011. V. 83. Р. 235313-1-8.
  38. Nikolaeva E.V., Shur V.Ya., Dolbilov M.A., et al. Formation of nanoscale domain structures and abnormal switching kinetics inlithiumniobatewithsurfacelayermodifiedbyimplantationofcopperions // Ferroelectrics. 2008. V. 374. Р. 73-77.
  39. Shur V.Ya., Ievlev A.V., Nikolaeva E.V., et al. Influence of adsorbed surface layer on domain growth in the field produced by conductive tip of scanning probe microscope in lithium niobate // J. Appl. Phys. 2011. V. 110. Р. 052017-1-5.
  40. Shur V.Ya., Nikolaeva E.V., Shishkin E.I., et al. polarization reversal in congruent and stoichiometric lithium tantalate. // Appl. Phys.Lett. 2001. V. 79. Р. 3146-3148.
  41. Shur V.Ya, Kuznetsov D.K., Mingaliev E.A., et al. In situ investigation of formation of self-assembled nanodomain structure in lithium niobate after pulse laser irradiation // Appl. Phys. Lett. 2011. V. 99. N. 8. Р. 082901-1-3.
  42. Shur V.Ya., Rumyantsev E.L., Nikolaeva E.V., et al. Regular ferroelectric domain array in lithium niobate crystals for nonlinear optic applications // Ferroelectrics. 2000. V. 236. Р. 129-144.
  43. Shur V., Rumyantsev E., Batchko R., et al. Physical basis of the domain engineering in the bulk ferroelectrics // Ferroelectrics. 1999. V. 221. Р. 157-167.
  44. Shur V.Ya., Rumyantsev E., Nikolaeva E., et al. Micro- and nanoscale domain engineering in lithium niobate and lithium tantalate // SPIE Proceedings on Smart Structures and Materials. 2000. V. 3992. Р. 143-154.
  45. Shur V.Ya. Domain engineering in lithium niobate and lithium tantalate: domain wall motion // Ferroelectrics. 2006. V. 340. Р. 3-16.
  46. Shur V.Ya., Rumyantsev E., Nikolaeva E., et al. Recent achievements in domain engineering in lithium niobate and lithium tantalate // Ferroelectrics. 2001. V. 257. Р. 191-202.
  47. De Micheli M.P., Fabrication and characterization of proton exchanged waveguides in periodically poled congruent lithium niobate // Ferroelectrics. 2006. V. 340. Р. 49-62.
  48. Kuznetsov D.K., Shur V.Ya., Mingaliev E.A., et al. Nanoscale domain structuring in lithium niobate single crystals by pulse laser heating // Ferroelectrics. 2010. V. 398. Р. 49-54.
  49. Mingaliev E.A., Shur V.Ya., Kuznetsov D.K., et al. Formation of stripe domain structures by pulse laser irradiation of LiNbO3 Crystals // Ferroelectrics. 2010. V. 399. Р. 7-13.
  50. Lobov A.I., Shur V.Ya., Kuznetsov D.K., et al. discrete switching by growth of nano-scale domain rays under highly-nonequilibrium conditions in lithium niobate single crystals // Ferroelectrics. 2008. V. 373.  .99-108.
  51. Lobov A.I., Shur V.Ya., Baturin I.S., et al. Field induced evolution of regular and random 2D domain structures and shape of isolated domains in LiNbO3and LiTaO3 //Ferroelectrics. 2006. V. 341. Р. 109-116.
  52. Chernykh A., Shur V.Ya., Nikolaeva E.V., et al. Shapes of isolated domains and field induced evolution of regular and random 2D domain structures in LiNbO3and LiTaO3 // Mater. Sci. Eng. B. 2005. V. 120. N. 1-3. Р. 109-113.
  53. Shur V.Ya.Fast polarization reversal process: evolution of ferroelectric domain structure in thin films // Ferroelectric Thin Films: Synthesis and Basic Properties. Ferroelectricity and Related Phenomena series. Ed. by C.A. Paz de Araujo, J.F. Scott, G.W. Taylor, Gordon & Breach Science Publ. 1996. V. 10. Ch. 6. Р. 153-192.
  54. Shur V.Ya, Rumyantsev E.L., Nikolaeva E.V., et al. Fast and superfast motion of ferroelectric domain boundaries // Integr. Ferroelectrics. 2003. V. 59. Р. 1493-1503.
  55. Shur V.Ya., Gruverman A.L., Rumyantsev E.L. Dynamics of domain structure in uniaxial ferroelectrics // Ferroelectrics. 1990. V. 111. Р. 123-131.
  56. Shur V.Ya., Gruverman A.L., Ponomarev N.Yu., et al. Domain structure kinetics in ultrafast polarization switching in lead germanate // JETP Lett. 1991. V. 53 N. 12. Р. 615-619.
  57. Shur V.Ya., Rumyantsev E.L. Kinetics of ferroelectric domain structure during switching: theory and experiment // Ferroelectrics. 1994. V. 151. Р. 171-180.
  58. Shur V.Ya., Rumyantsev E.L. Kinetics of ferroelectric domain structure: retardation effects // Ferroelectrics. 1997. V. 191. Р. 319-333.
  59. Shur V.Ya., Lobov A.I., Rumyantsev E.L., et al. 3D modeling of domain structure evolution during discrete switching in lithium niobate // Ferroelectrics. 2010. V. 399. Р. 68-75.
  60. Shur V.Ya., Akhmatkhanov A.R., Baturin I.S., et al. Polarization reversal and jump-like domain wall motion in stoichiometric LiTaO3 produced by Vapor Transport Equilibration // J. Appl. Phys. 2012. V. 111. Р. 014101-1-8.
  61. Valdivia C. E., Sones C. L., Scott J. G., et al. Nanoscale surface domain formation on +z face lithium niobate by pulsed UV laser illumination // Appl. Phys. Lett. 2005. V. 86. Р. 022906.
  62. Shur V.Ya., Lobov A.I., Shur A.G., et al. Shape evolution of isolated micro-domains in lithium niobate // Ferroelectrics. 2007. V. 360. Р. 111-119.
  63. Shur V.Ya., Nikolaeva E.V., Shishkin E.I., et al. Domain shape in congruent and stoichiometric lithium tantalate //Ferroelectrics. 2002. V. 269. Р. 195-200.
  64. Shur V., Rumyantsev E., Nikolaeva E., et al. Formation and evolution of charged domain walls in congruent lithium niobate // Appl. Phys. Lett. 2000.V. 77. N. 22. Р. 3636-3638.