350 rub
Journal №2 for 2015 г.
Article in number:
Domain nanotechnology in single crystals of lithium niobate and lithium tantalate family
Authors:
V.Ya. Shur - Dr. Sc. (Phys.-Math.), Professor, Ural Federal University. E-mail: vladimir.shur@urfu.ru
Abstract:
The paper presents the review of the recent achievements in domain nanotechnology (formation of nanoscale domain structure) in single crystals of lithium niobate and lithium tantalate family. The main problems of the periodical poling with submicron periods have been dis-cussed. Several modern methods have been used for studying the micro- and nano-domain structures with high spatial resolution. The main stages of the domain evolution have been revealed. The methods of the polarization reversal in highly non-equilibrium switching conditions applied for creation of the nanodomain structures include: (1) superfast switching under the action of residual depolarization field, (2) creation of the artificial surface dielectric layer, (3) switching by pyroelectric field. The main role of the screening ineffective-ness has been demonstrated. The obtained results allowed to fabricate the periodically poled lithium niobate and lithium tantalate crys-tals for light frequency conversion with high efficiency and creation of the photonic devices with improved characteristics.
Pages: 38-45
References

 

  1. Shur V.Ya. Nano- andmicro-domain engineeringinnormalandrelaxorferroelectrics // Handbook of advanced dielectric, piezoelectric and ferroelectric materials. Synthesis, properties and applications / Ed. by Z.-G. Ye. Woodhead Publishing Ltd. 2008. R. 622-669.
  2. Shur V.Ya. Domain nanotechnology in ferroelectrics: nano-domain engineering in lithium niobate crystals // Ferroelectrics. 2008. V. 373. R. 1-10.
  3. Shur V.Ya. Domain nanotechnology in lithium niobate and lithium tantalate crystals // Ferroelectrics. 2010. V. 399. R. 97-106.
  4. Shur V.Ya. Correlated nucleation and self-organized kinetics of ferroelectric domains // Nucleation theory and applications / Ed. by J.W.P. Schmelzer. WILEY-VCH. Weinheim. 2005. Ch. 6. R. 178-214.
  5. Shur V.Ya. Kinetics of polarization reversal in normal and relaxor ferroelectrics: relaxation effects//Phase Transitions. 1998. V. 65. R. 49-72.
  6. Shur V.Ya.,Rumyantsev E.L., Nikolaeva E.V., et al.Formation of self-organized nanodomain patterns during spontaneous backswitching in lithium niobate // Ferroelectrics. 2001. V. 253. R. 105-114.
  7. Shur V.Ya.,Rumyantsev E.L., Nikolaeva E.V., et al.Nanoscale backswitched domain patterning in lithium niobate. //Appl. Phys. Lett.2000. V. 76. N. 2. R. 143-145.
  8. Shur V.Ya, Shishkin E., Rumyantsev E., et al. Self-organization in LiNbO3 and LiTaO3: Formation of micro- and nano-scale domain patterns. //Ferroelectrics. 2004. V. 304. R. 111-116.
  9. Shur V.Ya. Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3 //Journal of Materials Science. 2006. V. 41. R. 199-210.
  10. Dolbilov M.A., Shur V.Ya., Shishkin E.I., et al. Influence of surface layers modified by proton exchange on domain kinetics of lithium niobate //Ferroelectrics. 2008. V. 374. R. 14-19.
  11. Shur V.Ya., Kuznetsov D.K., Lobov A.I., et al., Formation of self-similar surface nano-domain structures in lithium niobate under highly nonequilibrium conditions// Ferroelectrics. 2006. V. 341. R. 85-93.
  12. Kuznetsov D.K., Shur V.Ya., Negashev S.A., et al. Formation of nano-scale domain structures in lithium niobate using high-intensity laser irradiation// Ferroelectrics. 2008. V. 373. R. 133-138.
  13. Shur V.Ya., Kuznetsov D.K., Lobov A.I., et al. Self-similar surface nanodomain structures induced by laser irradiation in lithium niobate //Phys. Solid State. 2008. V. 50. N. 4. R. 717-723.
  14. Zelenovskiy P.S., Fontana M.D., Shur V.Ya., et al.Raman visualization of micro- and nanoscale domain structures in lithium niobate. //Appl. Phys. A. 2010.V. 99.R. 741-744.
  15. Shur V.Ya., Shishkin E.I., Nikolaeva E.V., et al. Study of nanoscale domain structure formation using Raman confocal microscopy //Ferroelectrics. 2010. V. 398. R. 91-97.
  16. Armstrong J.A., Bloembergen N., Ducuing J., et al. Interactions between light waves in a nonlinear dielectric// Phys. Rev.1962. V. 127. R. 1918-1939.
  17. Byer R.L.Quasi-phasematched nonlinear interactions and devices. // J. Nonlinear Opt. Phys. Mater. 1997.V. 6. R. 549-592.
  18. Hum D.S., Fejer M.M.Quasi-phasematching // C. R. Phys.2007. V. 8. R. 180-198.
  19. Batchko R.G., Shur V.Y., Fejer M.M., Byer R.L. Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation //Appl. Phys. Lett.1999. V. 75. R. 1673-1675.
  20. Batchko R.G., Fejer M.M., Byer R.L., Woll D., Wallenstein R., Shur V.Ya., Erman L. Continuous-wave quasi-phase-matched generation of 60 mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate //Opt. Lett.1999. V.24. N. 18. R. 1293-1295.
  21. Harris S.E. Proposed backward wave oscillation in the infrared // Appl. Phys. Lett.1966.V. 9. N. 3. R. 114-116.
  22. Canalias C., Pasiskevicius V., Fokine M., et al. Backward quasi-phase-matched second-harmonic generation in submicrometer periodically poled flux-grown KTiOPO4//Appl. Phys. Lett.2005. V. 86. R. 181105.
  23. Canalias C., Pasiskevicius V. Mirrorless optical parametric oscillator //Nat. Photonics. 2007. V. 1. R. 459-462.
  24. 24 Gallo K., Assanto G., Parameswaran K.R., et al. All-optical diode in a periodically poled lithium niobate waveguide // Appl. Phys. Lett. 2001. V. 79. R. 314-316.
  25. Seidel J., Martin L.W., He Q.,et al. Conduction at domain walls in oxide multiferroics // Nat. Mater.2009. V. 8. R. 229-234.
  26. Sugita T., Mizuuchi K., Kitaoka Y., et al. Ultraviolet light generation in a periodically poled MgO: LiNbO3 waveguide// Jpn. J. Appl. Phys.2001.V. 40. R. 1751-1753.
  27. Kintaka K., Fujimura M., Suhara T., Nishihara H. Efficient ultraviolet light generation by LiNbO3 waveguide first-order quasi-phase-matched second-harmonic generation devices // Electron. Lett. 1996.V. 32. R. 2237-2238.
  28. Mizuuchi K., Yamamoto K. Harmonic blue light generation in bulk periodically poled LiTaO3// Appl. Phys. Lett.1995. V. 66. R. 2943-2945.
  29. Kuz-minov Yu.S.Lithium niobate crystals. Cambridge. 1997. R. 254.
  30. Shur V.Ya., Lobov A.I., Shur A.G., et al. Rearrangement of ferroelectric domain structure induced by chemical etching // Appl. Phys. Lett.2005.V. 87. N. 2. R. 022905.
  31. Shur V.Ya., Zelenovskiy P.S., Nebogatikov M.S., Alikin D.O., et al. Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO3 and LiTaO3 crystals // J. Appl. Phys. 2011. V. 110. R. 052013-1-6.
  32. Shur V.Ya., Chezganov D.S., Nebogatikov M.S., et al. Formation of dendrite domain structures in stoichiometric lithium niobate at elevated temperatures //J. Appl. Phys. 2012. V. 112. R. 104113-1-6.
  33. Fontana M.D., Hammoum R., Bourson P., et al. Raman probe on PPLN microstructures // Ferroelectrics. 2008. V. 373. R. 26-31.
  34. 34 Hammoum R., Fontana M.D., Bourson P., et al. Raman micro-spectroscopy as a probe to investigate PPLN structures // Ferroelectrics. 2007. V. 352. R. 106-110.
  35. 35 Hammoum R., Fontana M.D., Bourson P., et al. Characterization of PPLN-microstructures by means of Raman spectroscopy. // Appl. Phys.A. 2008. V. 91. R. 65-67.
  36. Zelenovskiy P.S., Shur V.Ya., Bourson P., et al. Raman study of neutral and charged domain walls in lithium niobate // Ferroelectrics. 2010. V. 398. R. 34-41.
  37. Eliseev E., Morozovska A., Svechnikov G., et al.Static conductivity of charged domain wall in uniaxial ferroelectric-semiconductors // Phys. Rev. B. 2011. V. 83. R. 235313-1-8.
  38. Nikolaeva E.V., Shur V.Ya., Dolbilov M.A., et al. Formation of nanoscale domain structures and abnormal switching kinetics inlithiumniobatewithsurfacelayermodifiedbyimplantationofcopperions // Ferroelectrics. 2008. V. 374. R. 73-77.
  39. Shur V.Ya., Ievlev A.V., Nikolaeva E.V., et al. Influence of adsorbed surface layer on domain growth in the field produced by conductive tip of scanning probe microscope in lithium niobate // J. Appl. Phys. 2011. V. 110. R. 052017-1-5.
  40. Shur V.Ya., Nikolaeva E.V., Shishkin E.I., et al. polarization reversal in congruent and stoichiometric lithium tantalate. // Appl. Phys.Lett. 2001. V. 79. R. 3146-3148.
  41. Shur V.Ya, Kuznetsov D.K., Mingaliev E.A., et al. In situ investigation of formation of self-assembled nanodomain structure in lithium niobate after pulse laser irradiation // Appl. Phys. Lett. 2011. V. 99. N. 8. R. 082901-1-3.
  42. Shur V.Ya., Rumyantsev E.L., Nikolaeva E.V., et al. Regular ferroelectric domain array in lithium niobate crystals for nonlinear optic applications // Ferroelectrics. 2000. V. 236. R. 129-144.
  43. Shur V., Rumyantsev E., Batchko R., et al. Physical basis of the domain engineering in the bulk ferroelectrics // Ferroelectrics. 1999. V. 221. R. 157-167.
  44. Shur V.Ya., Rumyantsev E., Nikolaeva E., et al. Micro- and nanoscale domain engineering in lithium niobate and lithium tantalate // SPIE Proceedings on Smart Structures and Materials. 2000. V. 3992. R. 143-154.
  45. Shur V.Ya. Domain engineering in lithium niobate and lithium tantalate: domain wall motion // Ferroelectrics. 2006. V. 340. R. 3-16.
  46. Shur V.Ya., Rumyantsev E., Nikolaeva E., et al. Recent achievements in domain engineering in lithium niobate and lithium tantalate // Ferroelectrics. 2001. V. 257. R. 191-202.
  47. De Micheli M.P., Fabrication and characterization of proton exchanged waveguides in periodically poled congruent lithium niobate // Ferroelectrics. 2006. V. 340. R. 49-62.
  48. Kuznetsov D.K., Shur V.Ya., Mingaliev E.A., et al. Nanoscale domain structuring in lithium niobate single crystals by pulse laser heating // Ferroelectrics. 2010. V. 398. R. 49-54.
  49. Mingaliev E.A., Shur V.Ya., Kuznetsov D.K., et al. Formation of stripe domain structures by pulse laser irradiation of LiNbO3 Crystals // Ferroelectrics. 2010. V. 399. R. 7-13.
  50. Lobov A.I., Shur V.Ya., Kuznetsov D.K., et al. discrete switching by growth of nano-scale domain rays under highly-nonequilibrium conditions in lithium niobate single crystals // Ferroelectrics. 2008. V. 373.  .99-108.
  51. Lobov A.I., Shur V.Ya., Baturin I.S., et al. Field induced evolution of regular and random 2D domain structures and shape of isolated domains in LiNbO3and LiTaO3 //Ferroelectrics. 2006. V. 341. R. 109-116.
  52. Chernykh A., Shur V.Ya., Nikolaeva E.V., et al. Shapes of isolated domains and field induced evolution of regular and random 2D domain structures in LiNbO3and LiTaO3 // Mater. Sci. Eng. B. 2005. V. 120. N. 1-3. R. 109-113.
  53. Shur V.Ya.Fast polarization reversal process: evolution of ferroelectric domain structure in thin films // Ferroelectric Thin Films: Synthesis and Basic Properties. Ferroelectricity and Related Phenomena series. Ed. by C.A. Paz de Araujo, J.F. Scott, G.W. Taylor, Gordon & Breach Science Publ. 1996. V. 10. Ch. 6. R. 153-192.
  54. Shur V.Ya, Rumyantsev E.L., Nikolaeva E.V., et al. Fast and superfast motion of ferroelectric domain boundaries // Integr. Ferroelectrics. 2003. V. 59. R. 1493-1503.
  55. Shur V.Ya., Gruverman A.L., Rumyantsev E.L. Dynamics of domain structure in uniaxial ferroelectrics // Ferroelectrics. 1990. V. 111. R. 123-131.
  56. Shur V.Ya., Gruverman A.L., Ponomarev N.Yu., et al. Domain structure kinetics in ultrafast polarization switching in lead germanate // JETP Lett. 1991. V. 53 N. 12. R. 615-619.
  57. Shur V.Ya., Rumyantsev E.L. Kinetics of ferroelectric domain structure during switching: theory and experiment // Ferroelectrics. 1994. V. 151. R. 171-180.
  58. Shur V.Ya., Rumyantsev E.L. Kinetics of ferroelectric domain structure: retardation effects // Ferroelectrics. 1997. V. 191. R. 319-333.
  59. Shur V.Ya., Lobov A.I., Rumyantsev E.L., et al. 3D modeling of domain structure evolution during discrete switching in lithium niobate // Ferroelectrics. 2010. V. 399. R. 68-75.
  60. Shur V.Ya., Akhmatkhanov A.R., Baturin I.S., et al. Polarization reversal and jump-like domain wall motion in stoichiometric LiTaO3 produced by Vapor Transport Equilibration // J. Appl. Phys. 2012. V. 111. R. 014101-1-8.
  61. Valdivia C. E., Sones C. L., Scott J. G., et al. Nanoscale surface domain formation on +z face lithium niobate by pulsed UV laser illumination // Appl. Phys. Lett. 2005. V. 86. R. 022906.
  62. Shur V.Ya., Lobov A.I., Shur A.G., et al. Shape evolution of isolated micro-domains in lithium niobate // Ferroelectrics. 2007. V. 360. R. 111-119.
  63. Shur V.Ya., Nikolaeva E.V., Shishkin E.I., et al. Domain shape in congruent and stoichiometric lithium tantalate //Ferroelectrics. 2002. V. 269. R. 195-200.
  64. Shur V., Rumyantsev E., Nikolaeva E., et al. Formation and evolution of charged domain walls in congruent lithium niobate // Appl. Phys. Lett. 2000.V. 77. N. 22. R. 3636-3638.