350 руб
Журнал «Информационно-измерительные и управляющие системы» №4 за 2013 г.
Статья в номере:
Интерфейс мозг-компьютер: физиологические предпосылки и клиническое применение
Авторы:
А.А. Фролов - д.м.н., зав. отделением, Институт высшей нервной деятельности и нейрофизиологии РАН, ФЭИ, Технический университет Остравы, Чешская Республика Е.В. Бирюкова - к.ф.-м.н., вед. науч. сотрудник, Институт высшей нервной деятельности и нейрофизиологии РАН П.Д. Бобров - науч. сотрудник, Институт высшей нервной деятельности и нейрофизиологии РАН, ФЭИ, Технический университет Остравы, Чешская Республика Л.А. Черникова - д.м.н., зав. отделением, Научный центр неврологии РАМН О.А. Мокиенко - ст. науч. сотрудник, Институт высшей нервной деятельности и нейрофизиологии РАН, Научный центр неврологии РАМН А.К. Платонов - д.ф.-м.н., ст. науч. сотрудник, Институт прикладной математики им. М.В. Келдыша РАН В.Е. Пряничников - д.т.н., вед. науч. сотрудник, МГТУ «Станкин», Институт прикладной математики им. М.В. Келдыша РАН, Международная лаборатория «Сенсорика». E-mail: val-rover@rambler.ru
Аннотация:
Рассмотрены нейрофизиологические предпосылки создания и функционирования интерфейсов мозгкомпьютер (ИМК), предназначенных для управления внешними техническими устройствами непосредственно электрическими сигналами мозга. Приведены результаты исследования ИМК, основанного на распознавании паттернов ЭЭГ, соответствующих воображению движения различных конечностей. Обсуждены возможности применения ИМК для реабилитации больных с двигательными нарушениями с помощью управляемого экзоскелетона.
Страницы: 44-56
Список источников
  1. Donoghue J.P., Nurmikko A., Black M., Hochberg L.R.Assistive technology and robotic control using motor cortex ensemble-based neural interface systems in humans with tetraplegia //Journal of Physiology. Special Issue on Brain Computer Interfaces. 2007. V. 579. P. 603-611.
  2. Birbaumer N., Cohen L.G. Brain-computer interfaces: communication and restoration of movement in paralysis // Journal of Physiology. Special Issue on Brain Computer Interfaces. 2007. V. 579. R. 621-636.
  3. Vidal J.J. Towards direct brain-computer communication // Annual Review of Biophysics and Bioengineering. 1973. V. 2. P. 157-180.
  4. Vidal J.J. Real-time detection of brain events in EEG // IEEE Proceedings. Special issue on Biological Signal Processing and Analysis. 1977. V. 65. P. 633-664.
  5. Konrad P., Shanks T. Implantable brain computer interface: challenges to neurotechnology  translation // Neurobiology Disorders. 2010. V. 38. P. 369-375.
  6. Wolpaw J.R. Brain-computer interfaces as new brain output pathways //  Journal of Physiology. 2007. V. 579. P. 613-619.
  7. Pfurtscheller G. EEG event-related desynchronization (ERD) and event related synchronization (ERS) // Electroencephalography: basic principles, clinical applications and related fields (Niedermeyer E., Lopes da Silva F.H. eds.). 4th ed. Baltimore, MD: Williams and Wilkins. 1999. pp. 958-967.
  8. Pfurtscheller G, Berghold A. Patterns of cortical activation during planning of voluntary movement // Electroencephalography and Clinical Neurophysiology. 1989. V. 72. P. 250-258.
  9. Pfurtscheller G, Lopes da Silva F.H.Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology. 1999. V. 110. P. 1842-1857.
  10. Ivanickijj G.A.Raspoznavanie tipa reshaemojj v ume zadachi po neskolkim sekundam EHEHG s pomoshhju obuchaemogo klassifikatora // ZHVND im. I.P. Pavlova. 1997.T. 47. C. 743-747.
  11. Ivanickijj G.A., Nikolaev A.R., Ivanickijj A.M. Ispolzovanie iskusstvennykh nejjrosetejj dlja raspoznavanija tipa myslitelnykh operacijj po EHEHG // ZHurnal aviakosmicheskojj i ehkologicheskojj mediciny. 1993. T. 31.  S. 23-28.
  12. Nikolaev A.R., Ivanickijj G.A., Ivanickijj A.M. // Vosproizvodjashhiesja patterny alfa-ritma EHEHG pri reshenii psikhologicheskikh zadach // Fiziologija cheloveka. 1998. T. 24(3). S. 5-12.
  13. Sellers E.M., Turner P., Sarnacki W.A., Mcmanus T., Vaugan T.M., Matthews B. A novel dry electrode for brain-computer interface //  Proceedings of 13th International Conference on Human-Computer Interaction, San Diego, CA, USA. 2009.
  14. Sullivan T.J., Deiss S.R., Jung T.P., Cauwenberghs G. A brain-machine interface using dry-contact, low-noise EEG sensors // Proceedings of the 2008 IEEE International Symposium on Circuits and Systems (ISCAS 2008). Seattle. WA. USA. 2008.
  15. Ruffini G., Dunne S., Farres E., Cester I., Watts P.C.P., Silva S.R.P, Grau C., Fuentemilla L., Marco-Pallares J., Vandecasteele B.ENOBIO dry electrophysiology electrode; first human trial plus wireless electrode system // Proceedings of the 29th Annual International Conference of the IEEE Engineering Medicine and Biology Society, Lyon, France. 2007.
  16. Popescu F., Fazli Y., Badower S., Blankertz B., Muller K.-R. Single trial classification of motor imagination using 6 dry EEG electrodes. 2007. PloSONE 2:e637. doi:10.1371/journal.pone.0000637.
  17. Millan J. d. R., Rupp R., Müller-Putz G. R., Murray-Smith R., Giugliemma C., Tangermann , C. Vidaurre M., Cincotti F., Kübler A., Leeb1 R., Neuper C., Müller K.-R., and Mattia D.Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges // Frontiers in Neuroscience. 2010. V. 4. Article 161.
  18. Wolpaw J.R, McFarland D.J. Control of two-dimensional movement signal by a noninvasive brain-computer interface in humans // Proceedings of the National Academy of Sciences. USA. 2004. V.101(51). P. 17849-17854.
  19. Georgopoulos A.P., Kalaska J.F., Crutcher M.D., Caminiti R., Massey J.T. On the relations between the direction of two-dimensional (2D) arm movements and cell discharge in primate motor cortex // Journal of Neuroscience. 1982. V.2. P.1527-1537.
  20. Lebedev M.A., Nicolelis M.A.L.Brain-machine interfaces: past, present and future // Trends in Neurosciences. 2006. V. 29 (9).  P. 536-546.
  21. Birbaumer N. Slow cortical potentials: their origin, meaning, and clinical use //Brain and behavior past, present, and future (VanBoxtel G.J.M., Bocker K.B.E. eds.). Tilburg: Tilburg University Press. 1997. R. 25-39.
  22. Birbaumer N.. Ghanayim N., Hinterberger T., Iversen I., Kotchoubey B., Kubler A., Perelmouter J., Taub E., Flor H. A spelling device for the paralyzed  // Nature. 1999. V. 398. P. 297-298.
  23. Birbaumer N., Kubler A., Ghanayim N., Hinterberger T., Perelmouter J., Kaiser J., Iversen I., Kotchoubey B., Neumann N., Flor H.The thought translation device (TTD) for completely paralyzed patients // IEEE Transactions on Rehabilitation Engineering. 2000. V. 8. P. 190-192.
  24. Lew E., Chavarriaga R., Silvoni S., Millán J.R. Detection of self-paced reaching movement intention from EEG signals // Frontiers of Neuroengineering. 2012. V. 5. P.13. doi: 10.3389/fneng.2012.00013.
  25. Sutton S., Braren M., Zubin J., John E.R. Evoked correlates of stimulus uncertainty // Science. 1965. V. 150. P. 1187-1188.
  26. Donchin E., Smith D.B. The contingent negative variation and the late positive wave of the average evoked potential // Electroencephalography and Clinical Neurophysiology. 1970. V. 29. P. 201-203.
  27. Farwell L.A., Donchin E. Talking off the top of your head: A mental prosthesis utilizing event-related brain potentials //  Electroencephalography and Clinical Neurophysiology.1988. V. 70. P. 510-523.
  28. Donchin E., Spencer K.M., Wijesinghe R. The mental prosthesis: assessing the speed of a P300-based brain-computer interface.  IEEE Transactions on Reabilitation. 2000. V. 8(2). P. 174-179.
  29. Millan J.del R., Mourino J., Marciani M.G., Babiloni F., Topani F., Canale I., Heikkonen J., Kaski K. Adaptive brain interfaces for physically-disabled people // 2nd Annual Int.Conf. of the IEEE Engineering in Medicine and Biology Science. Hong Kong. 1998.
  30. Bobrov P.D., Gusek D., Korshakov A.V., Frolov A.A. Istochniki aktivnosti mozga, znachimye i neznachimye dlja klassifikacii patternov EHEHG, sootvetstvujushhikh voobrazheniju dvizhenijj // Nejjrokompjutery: razrabotka, primenenie. 2011. № 12. S. 1-15.
  31. Bobrov P.D., Korshakov A.V., Roshhin V.JU., Frolov A.A.Bajjesovskijj podkhod k realizacii interfejjsa mozg-kompjuter, osnovannogo na predstavlenii dvizhenijj // ZHVND im. I.P. Pavlova. 2012. T. 62. S. 89-99.
  32. Frolov A., Husek D., Bobrov P. Comparison of four classification methods for brain computer interface // Neural Network World. 2011. V. 21(2). P.101-192.
  33. Bobrov P., Frolov A., Cantor C., Fedulova I., Bakhnyan M. Brain-Computer Interface Based on Generation of Visual Images // PLoS ONE. 2011. V. 6(6). e20674. doi:10.1371/journal.pone.0020674.
  34. Frolov A., Husek D., Bobrov P., Korshakov A., Chernikova L., Konovalov R., Mokienko O. Sources of EEG activity the most relevant to performance of brain-computer interface based on motor imagery // Neural Network World. 2012. V. 22(1). P. 21-37.
  35. Neidermeyer E. The normal EEG of the waking adult // Electroencephalography: basic principles, clinical applications and related fields (Niedermeyer E., Lopes da Silva F.H. eds.) 4th ed. Baltimore, MD: Williams and Wilkins. 1999. P. 149-173.
  36. Lopes da Silva F.Neural mechanisms underlying brain waves: from neural membranes to networks // Electroencephalography and Clinical Neurophysiology. 1991. V.79. P. 81-93.
  37. McFarland D.J., Miner L.A., Vaughan T.M., Wolpaw J.R.µ and β rhythm topographies during motor imagery and actual movement // Brain Topography. 2000. V. 3. R.177-186.
  38. Jeannerod M. Neural simulation of action: a unifying mechanism for motor cognition // Neuroimage. 2001. V. 14. P. 103-109.
  39. Jeannerod M., Frak V. Mental imaging of motor activity in humans // Current Opinion in Neurobiology. 1999. V. 9. P. 735-739.
  40. Neuper C., Scherer R., Reiner M., Pfurtscheller G. Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG // Cognitive Brain Research. 2005. V. 25(3). P. 668-77.
  41. Blum F., Lejjzerson A., KHofstedter L. Mozg, razum i povedenie. M.: Mir. 1988.
  42. Kohavi R., Provost F. Glossary of terms. Machine Learning // Special Issue of Applications of Machine Learning and the Knowledge Discovery Process. 1998. V. 30. P. 271-274.
  43. Kachenoura A., Albera L., Senhadji L., Comon P. ICA: a potential tool for BCI systems // IEEE Signal Processing Magazine. 2008. V. 25(1). P. 57-68.
  44. Delorme A., Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics // Journal of Neuroscience Methods. 2004. V. 134. P. 9-21.
  45. Hyvarinen A., Karhunen J., Oje E. Independent component analysis. N.Y.: Willey. 2001.
  46. Rougeul-Buser A., Buser P. Rhythms in the alpha band in cats and their behavioural correlates // International Journal of Psychophysiology. 1997. V. 26. P. 191-203.
  47. Daly J.J., Wolpaw J.R.Brain-computer interfaces in neurological rehabilitation // The Lancet Neurology. 2008. V.7(11). P. 1032-1043.
  48. Kubler A., Nijboer F., Mellinger J. Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface // Neurology. 2005. V. 64. P. 1775-1777.
  49. Simmons Z., Bremer B.A., Robbins R.A., Walsh S.M., Fischer S. Quality of life in ALS depends on factors other than strength and physical function // Neurology. 2000. V. 55. P. 388-392.
  50. Robbins R.A., Simmons Z., Bremer B.A., Walsh S.M., Fischer S. Quality of life in ALS is maintained as physical function declines // Neurology. 2001. V. 56. P. 442-444.
  51. Maillot F., Laueriere L., Hazouard E., Giraudeau B., Corcia P. Quality of life in ALS is maintained as physical function declines // Neurology. 2001. V. 57. P. 1939.
  52. Vaughan T.M., McFarland D.J., Schalk G. The Wadsworth BCI Research and Development Program: at home with BCI // IEEE Transactions on Neural Systems Rehabilitation Engineering. 2006. V. 14. P. 229-233.
  53. Leuthardt E.C., Schalk G., Wolpaw J.R., Ojemann J.G., Moran D.W. A brain-computer interface using electrocorticographic signals in humans // Journal of Neural Engineering. 2004. V. 1. P. 63-71.
  54. Kennedy P.R., Bakay R.A. Restoration of neural output from a paralysed patient by a direct brain connection // Neuroreport. 1998. V. 9(8). P. 1707-1711.
  55. Kennedy P.R., Bakay R.A., Moore M.M., Adams K., Goldwaithe J.Direct control of a computer from the human central nervous system // IEEE Transactions on Rehabilitation Engineering. 2000. V. 8. P.198-202.
  56. Serruya M.D., Hatsopoulos N.G., Paninski L., Fellows M.R. Donoghue J.P.Brain-machine interface: instant neural control of a movement signal // Nature. 2002. V. 416. P. 141-142.
  57. Taylor D.M., Tillery SI, Schwartz A.B. Direct cortical control of 3D neuroprosthetic devices // Science. 2002. V. 296. P. 1829-1832.
  58. Taylor D.M., Tillery S.I., Schwartz A.B. Information conveyed through brain-control: cursor versus robot // IEEE Transactions on Neural Systems Rehabilitation Engineering. 2003. V. 11. P. 195-199.
  59. Carmena J.M., Lebedev M.A., Crist R.E., O-Doherty J.E., Santucci D.M., Dimitrov D.F., Patil P.G., Henriquez C.S., Nicolelis M.A.L. Learning to control a brain-machine interface for reaching and grasping by primates // PLoS Biology. 2003. V. 1. P. E42.
  60. Chapin J.K., Moxon K.A., Markowitz R.S., Nicolelis M.A. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex // Nature Neuroscience. 1999. V. 2. P. 664-670.
  61. Schalk G., Miller K.J., Anderson N.R. Two-dimensional movement control using electrocorticographic signals in humans // Journal of Neural Engineering. 2008. V. 5. P. 75-84.
  62. Frolov A.A., Dufosse M., Rizek S., Kaladjian A. On the possibility of linear modelling the human arm neuromuscular apparatus // Biological Cybernetics. 2000. V. 82. P. 499-515.
  63. Frolov A. A., Prokopenko R. A., Dufosse M., Ouezdou F. B. Adjustment of the human arm viscoelastic properties to the direction of reaching // Biological Cybernetics. 2006. V. 94. P. 97-109.
  64. Kubler A., Birbaumer N.Brain-computer interfaces and communication in paralysis: Extinction of goal directed thinking in completely paralysed patients - // Clinical Neurobiology. 2008. V. 119. P. 2658-2666.
  65. Netz J., Lammers T., Homberg V. Reorganization of motor output in the non-affected hemisphere after stroke // Brain. 1997.  V. 120. P. 1579-1586. 
  66. Platz T., Kim I.H., Pintschovius H., Winter T., Kieselbach A., Villringer K., Kurth R., Mauritz K.H.Multimidal EEG analysis in man suggests impairment-specific changes in movement-related electric brain activity after stroke // Brain. 2000. V.123. P. 2475-2490.
  67. Cramer S.C. Functional imaging in stroke recovery // Stroke. 2004. V. 35. P. 2695-2698.
  68. Ward N.S., Cohen L.G. Mechanisms underlying recovery of motor function after stroke // Archives of Neurology. 2004. V. 61. P. 1844-1848.
  69. Jack D., Boian R., Merians A.S., Tremaine M., Burdea G.C., Adamovich S.V., Recce M., Poizner H. Virtual reality-enhanced stroke rehabilitation // IEEE Transactions of Neural Systems Rehabilitation Engineering. 2001. V. 9. P. 308-318.
  70. Holden M.K., Dyar T.A., Schwamm L., Bizzi E. Virtual-environment-based telerehabilitation in patients with stroke // Presence: Teleoperations and Virtual Environments. 2005. V. 14. P. 214-233.
  71. Takahashi C.D., Der-Yeghianian L., Le V., Motiwala R.R., Cramer S.C.Robot-based hand motor therapy after stroke // Brain. 2008. V. 131. P. 425-437.
  72. Volpe B.T., Huerta P.T., Zipse J.L., Rykman A., Edwards D., Dipietro L., Hogan N., Krebs H.I. Robotic devices as therapeutic and diagnostic tools for stroke recovery // Archives of Neurology. 2009. V. 66. P. 1086-1090.
  73. Decety J., Jeannerod M. Mentally simulated movements in virtual reality: does Fitts-s law hold in motor imagery - // Behavioral and Brain Research. 1995. V. 72. P. 127-134.
  74. Berthoz A. (1996). The role of inhibition in the hierarchical gating of executed and imagined movements // Cognitive Brain Research. 1996. V. 3. P. 101-113.
  75. Lotze M., Halsband U. Motor imagery // Journal of Physiology. 2006. V. 99. P. 386-395.
  76. Buch E., Weber C., Cohen L.G., Braun C., Dimyan M.A., Ard T., Mellinger J., Caria A., Soekadar S., Fourkas A., Birbaumer N. Think to move: a neuromagnetic Brain-Computer Interface (BCI) system for chronic stroke // Stroke. 2008. V.39. P. 910-917.
  77. Daly J.J., Fang Y., Perepezko E.M., Siemionow V., Yue G.H.Prolonged cognitive planning time, elevated cognitive effort, and relationship to coordination and motor control following stroke // IEEE Transactions on Neural Systems Rehabilitation Engineering. 2006. V.14. P. 168-171.
  78. Nudo R.J., Wise B.M., SiFuentes F., Milliken G.W. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct // Science. 1996. V. 272. P. 1791-1794.
  79. Rizzolatti G., Fogassi L., Gallese V. Neurophysiological mechanisms underlying the understanding and imitation of action // Nature Reviews Neuroscience. 2001. V. 2. P. 661-670.
  80. Iacoboni M., Koski L.M., Brass M.Reafferent copies of imitated actions in the right superior temporal cortex //Proceedings of the National Academy of Sciences. USA. 2001. V. 98. P. 13995-13999.
  81. Carmichael S.T., Chesselet M.F.Synchronous neuronal activity is a signal for axonal sprouting after cortical lesions in the adult. Journal of Neuroscience. 2002. V. 22. P. 6062-6070.
  82. Ring H., Rosenthal N. Controlled study of neuroprosthetic functional electrical stimulation in sub-acute post-stroke rehabilitation // Journal of Rehabilitation Medicine. 2005. V. 37. P. 32-36.
  83. Alon G., Sunnerhagen K.S., Geurts A.C., Ohry A. A home-based, self-administered stimulation program to improve selected hand functions of chronic stroke // NeuroRehabilitation. 2003. V. 18. P. 215-225.
  84. Daly J.J., Hogan N., Perepezko E.M.Response to upper-limb robotics and functional neuromuscular stimulation following stroke // Journal of Rehabilitation Research and Development. 2005. V. 42. P. 723-736.