350 руб
Журнал «Биомедицинская радиоэлектроника» №11 за 2012 г.
Статья в номере:
Прогнозирование заболеваемости с использованием адаптивных и нечётких моделей
Ключевые слова:
эпидемия
заболеваемость
динамические модели
временные ряды
тренд
периодичность
показатель Херста
персистентность
прогноз
нечёткие множества
Авторы:
В.В. Котин, Т.А. Ярынкина
Аннотация:
Для построения прогноза заболеваемости скарлатиной в 1996-2008 гг. в Москве среди детей в возрасте от 3 до 6 лет применены адаптивные и нечеткие методы прогнозирования. Вычислены автокорреляционная функция, периодограмма и показатель Херста. Протестированы процедуры прогнозирования с использованием адаптивных методов, нейро-нечеткой гибридной сети и нечеткого вывода на основе экспертных оценок. Проведено сравнение результатов прогноза и оценок погрешности с использованием различных методов прогнозирования.
Страницы: 13-22
Список источников
- Андерсон Р., Мэй Р. Инфекционные болезни человека. Динамика и контроль. Мир: Научный мир. 2004.784 с.
- Романюха А.А. Математические модели в иммунологии и эпидемиологии инфекционных заболеваний. М.: Бином. 296 с. 2012.
- Покровский В.И., Брико Н.И. Общая эпидемиология с основами доказательной медицины. Руководство к практическим занятиям. М.: Геотар-Медиа. 2008. 400 с.
- Васильев А.А.Теоретическая биология. Ч. 1. М.: МФТИ. 2002.
- Безручко Б.П., Смирнов Д.А. Математическое моделирование и хаотические временные ряды. Саратов: ГосУНЦ «Колледж». 2005. 320 c.
- Боев Б.В., Семененко Т.А., Бондаренко В.М. и др. Актуальные проблемы создания информационно-аналитической системы для оперативного противодействия эпидемиям инфекционных заболеваний // Журнал микробиологии. 2011. № 6. С. 37-42.
- Брико Н.И., Котин В.В., Ярынкина Т.А. Анализ периодичности и персистентентности временных рядов заболеваемости / Сб. докладов 13-й научно-технич. конф. «МЕДТЕХ-2011» Медико-технические технологии на страже здоровья. М.: Изд-во. МГТУ им. Н.Э. Баумана. 2011. С. 20-27.
- Калуш Ю.А., Логинов В.М. Показатель Херста и его скрытые свойства // Сибирский журнал индустриальной математики. 2002. Т. V. № 4 (12). С. 29-37.
- Цыплаков А. Введение в прогнозирование в классических моделях временных рядов // Квантиль. 2006. № 1. С. 3-19.
- Дегтярев К.Ю.Применение специализированных компьютерных программ и методов, основанных на нечетких временных рядах для краткосрочного прогнозирования USB/RUB котировок [Электронный ресурс] URL: http://Exponenta.ru (дата обращения 03.07.2012).
- Лукашин Ю.П.Адаптивные методы краткосрочного прогнозирования временных рядов. М.: Финансы и статистика. 2003. 416 с.
- Ярушкина Н.Г., Афанасьева Т.В., Перфильева И.Г. Интеллектуальный анализ нечетких временных рядов: учеб. пособие. Ульяновск: УлГТУ. 2010. 320 с.
- Ярушкина Н.Г., Перфильева И.Г., Афанасьева Т.В. Интеграция нечетких моделей для анализа временных рядов // Изв. Самарского научного центра Российской академии наук. 2010. Т.12. №4 (2). С. 506-509.
- Леоненков А.В.Нечеткое моделирование в среде MATLAB и fuzzyTECH. СПб.: БХВ-Петербург. 2005. 756 с.