350 руб
Журнал «Успехи современной радиоэлектроники» №5 за 2023 г.
Статья в номере:
Микроминиатюризация многоканальных многочастотных радиотермографов (часть 1)
Тип статьи: научная статья
DOI: https://doi.org/10.18127/j20700784-202305-04
УДК: 612.563
Авторы:

А.Г. Гудков1, С.Г. Веснин2, В.Ю. Леушин3, И.А. Сидоров4, В.Г. Тихомиров5, М.К. Седанкин6,
С.В. Чижиков7, Р.В. Агандеев8, В.Д. Шашурин9

1–4,6–9 Московский государственный технический университет им. Н.Э. Баумана (Москва, Россия)

5 СПбГЭТУ «ЛЭТИ» им. В.И. Ульянова (Ленина) (Санкт-Петербург, Россия)

8 ООО «НПИ ФИРМА ГИПЕРИОН» (Москва, Россия)

Аннотация:

Постановка проблемы. Создание сложных технических систем требует перехода от проектирования и изготовления
отдельных частей системы к комплексному проектированию всей системы. Система, созданная из оптимальных частей, не
является оптимальной в целом, поэтому необходим переход от обычной элементной базы к конструктивному исполнению с использованием монолитных интегральных схем (МИС).

Цель. Рассмотреть процесс разработки прототипа радиотермографа и исследовать процесс объединения в радиометрическом комплексе принципов многоканальности, многочастотности и миниатюризации.

Результаты. Рассмотрен процесс создания и приведены результаты разработки прототипов радиотермографа; описан
постепенный переход от радиометра на обычной элементной базе к гибридному исполнению с использованием МИС СВЧ.
Приведено поэтапное исследование процесса создания по объединению в радиометрическом комплексе многоканальности, многочастотности и миниатюризации.

Практическая значимость. Поэтапный переход от радиотермографа на обычной элементной базе к конструктивному исполнению с использованием МИС СВЧ приведет к расширению его функциональных возможностей и существенному уменьшению размеров. Комплексное проектирование радиотермографа позволит достичь оптимального сочетания стоимости и качества.

Страницы: 48-63
Для цитирования

Гудков А.Г., Веснин С.Г., Леушин В.Ю., Сидоров И.А., Тихомиров В.Г., Седанкин М.К., Чижиков С.В., Агандеев Р.В., Шашурин В.Д. Микроминиатюризация многоканальных многочастотных радиотермографов (часть 1) // Успехи современной радиоэлектроники. 2023. T. 77. № 5. С. 48–63. DOI: https://doi.org/10.18127/j20700784-202305-04

Список источников
  1. Nyquist H. Thermal agitation of electric charge in conductors // Phys. Rev. 1928. V. 32. P. 110–113.
  2. Johnson J.B. Thermal agitation in conductors // Phys. Rev. 1928. № 32. P. 97–109.
  3. Dicke R. The measurement of thermal radiation at microwave frequencies // Review Science Instruments. 1946. V. 17. № 7. P. 268–275.
  4. Klemetsen O. Design and evaluation of medical microwave radiometer for observing temperature gradients subcutaneously in the human body. Phd thesis. University of Tromso, faculty of science department of physics and technology. Tromso. 2011.
  5. Park W., Jenq J. Total power radiometer for medical sensor application using matched and MICmatched noise sources // Sensors. 2017. V. 17. № 9. 2105.
  6. Barrett A., Myers P.C., Sadowsky N.L. Dedection of breast cancer by microwave radiometer // Radio Sci. 1977. V. 12. № 68. P. 167–171.
  7. Carr K.L. Microwave radiometry: Its importance to the detection of cancer // IEEE Trans. Microw. Theory Techn. Dec. 1989. V. 37. № 12. P. 1862–1869.
  8. Vesnin S. et al. Modern microwave thermometry for breast cancer // Journal of Molecular Imaging & Dynamics [Online]. 2017, Oct. 7(2). Available: https://www.longdom.org/open-access/modern-microwave-thermometry-for-breast-cancer-2155-9937-1000136.pdf
  9. Goryanin I. et al. Passive microwave radiometry in biomedical studies // Drug Discovery Today. Apr. 2020. V. 25(4). P. 757–763.
  10. Toutouzas K. et al. Noninvasive detection of increased carotid artery temperature in patients with coronary artery disease predicts major cardiovascular events at one year: Results from a prospective multicenter study // Atherosclerosis. Jul. 2017. V. 262. P. 25–30.
  11. Drakopoulou M. et al. The role of microwave radiometry in carotid artery disease. Diagnostic and clinical prospective // Current Opinion in Pharmacology. Apr. 2018. V. 39. P. 99–104.
  12. Groumpas E. et al. Real-time passive brain monitoring system using near-field microwave radiometry // IEEE Trans. on Biomedical Engineering. Apr. 2019. V. 67. № 1. P. 158–165.
  13. Kublanov V.S., Borisov V.I. Biophysical evaluation of microwave radiation for functional research of the human brain // Proc. IFMBE. 2017. P. 1045–1048.
  14. Gudkov A.G. et al. Use of multichannel microwave radiometry for functional diagnostics of the brain // Biomedical Engineering. Jul. 2019. V. 53. № 2. P. 108–111.
  15. Cheboksarov D.V. et al. Diagnostic opportunities of noninvasive brain thermomonitoring // Anesteziologiia i Reanimatologiia. Yan. 2015. V. 60 (1). P. 66–69.
  16. Shevelev O.A. et al. Therapeutic Hypothermia Systems // Biomed. Eng. 2021. № 54. P. 397–401.
  17. Rodrigues D.B. et al. Microwave radiometry for noninvasive monitoring of brain temperature // Emerging electromagnetic technologies for brain diseases diagnostics, monitoring and therapy, Springer, Cham. 2018. P. 87–127.
  18. Laskari K. et al. Joint microwave radiometry for inflammatory arthritis assessment // Rheumatology. Apr. 2020. V. 59 (4). P. 839–844.
  19. Ravi V.M., Sharma A.K., Arunachalam K. Pre‐clinical testing of microwave radiometer and a pilot study on the screening inflammation of knee joints // Bioelectromagnetics. Jul. 2019. V. 40. № 6. P. 402–411.
  20. Arunachalam K. et al. Detection of vesicoureteral reflux using microwave radiometry-system characterization with tissue phantoms // IEEE Transactions on biomedical engineering. 2011. Т. 58. № 6. P. 1629–1636.
  21. Jacobsen S., Klemetsen Ø., Birkelund Y. Vesicoureteral reflux in young children: a study of radiometric thermometry as detection modality using an ex vivo porcine model // Physics in Medicine & Biology. Aug. 2012. V. 57. № 17. P. 5557.
  22. Crandall J.P. et al. Measurement of brown adipose tissue activity using microwave radiometry and 18F-FDG PET/CT // Journal of Nuclear Medicine. Aug. 2018. V. 59. № 8. P. 1243–1248.
  23. Andreev V.V., Barantsevich E.R. Treatment of acute and chronic pain syndromes in lumbosacral radiculopathy // Effect. Pharmacother. 2018. T. 4. P. 42–49.
  24. Tarakanov A.V. et al. Influence of Ambient Temperature on Recording of Skin and Deep Tissue Temperature in Region of Lumbar Spine // European Journal of Molecular &Clinical Medicine. 2020. T. 7(1). P. 21–26. DOI: https://doi.org/10.5334/ejmcm.274.
  25. Tarakanov A.V. et al. Microwave Radiometry (MWR) temperature measurement is related to symptom severity in patients with Low Back Pain (LBP) // Journal of Bodywork and Movement Therapies. 2021. T. 26. P. 548–552.
  26. Osmonov B. et al. Passive Microwave Radiometry for the Diagnosis of Coronavirus Disease 2019 Lung Complications in Kyrgyzstan // Diagnostics. 2021. T. 11(2). P. 259.
  27. Momenroodaki P. Noninvasive internal body temperature tracking with near-field microwave radiometry // IEEE Trans. on Microwave Theory and Techniques. May 2018. V. 66 (5). P. 2535–2545.
  28. Stauffer P.R. et al. Stable microwave radiometry system for long term monitoring of deep tissue temperature // Energy-based Treatment of Tissue and Assessment VII. – International Society for Optics and Photonics. 2013. Т. 8584. С. 85840R. in Proc. SPIE 8584, Energy-based treatment of tissue and assessment VII, 26 February 2013, San Francisco, California, United States.
  29. Haines W. et al. Wireless system for continuous monitoring of core body temperature // Proc. IEEE MTT-S International Microwave Symposium (IMS). 4-9 June 2017. Honololu, HI, USA.
  30. Popovic Z., Momenroodaki P., Scheeler R. Toward wearable wireless thermometers for internal body temperature measurements // IEEE Communications Magazine. Oct. 2014. V. 52 (10). P. 118–125.
  31. Momenroodaki P., Haines W., Popovic Z. Non-invasive microwave thermometry of multilayer human tissues // Proc. IEEE MTT-S International Microwave Symposium (IMS). 4-9 June 2017. Honololu, HI, USA.
  32. Ravi V.M., Arunachalam K. A low noise stable radiometer front-end for passive microwave tissue thermometry // Journal of Electromagnetic Waves and Applications. 2019. V. 33(6). P. 743–758.
  33. Maccarini P.F. et al. A novel compact microwave radiometric sensor to noninvasively track deep tissue thermal profiles // 2015 European Microwave Conference (EuMC). 2015, September. P. 690–693.
  34. Gulyaev Yu.V., Godik E.E. Fizicheskie polya biologicheskih obektov // Vestnik AN SSSR. Seriya fizicheskaya. 1983. № 8. S. 118–125 (Гуляев Ю.В., Годик Э.Э. Физические поля биологических объектов // Вестник АН СССР. Серия физическая. 1983. № 8. С. 118–125).
  35. Kublanov V.S. Radiophysical system for examining functional state of a patient's brain // Biomedical Engineering. 2009. Т. 43. № 3. P. 114–119.
  36. Kublanov V.S., Borisov V.I. Features of Organization the Radiophysical Complex for Research of Functional Processes in the Brain Tissues // Proceedings 2015 International Conference on Biomedical Engineering and Computational Technologies (SIBIRCON). 2015 SIBIRCON / SibMedInfo. Technopark of Novosibirsk Akademgorodok. P. 93–98. IEEE Catalog Number: CFP1511E-ART. ISBN: 978-1-4673-9111-5.
  37. Kräuchi K. et al. Functional link between distal vasodilation and sleep-onset latency? // Amer. J. Physiol.- Reg., Integr. Comparative Physiol. 2000. V. 278. № 3. P. R741–R74.
  38. Rosenthal N.E. et al. Effects of light treatment on core body temperature in seasonal affective disorder // Biol. Psychiatry. Jan. 1990. V. 27. № 1. P. 39–50.
  39. Gale J.E. et al. Disruption of circadian rhythms accelerates development of diabetes through pancreatic beta-cell loss and dysfunction // J. Biol. Rhythms. 2011. V. 26. № 5. P. 423–433.
  40. Jeyaraj D. et al. Circadian rhythms govern cardiac repolarization and arrhythmogenesis // Nature. 2012. v. 483. № 7387. p. 96–99.
  41. Shaeffer J. et al. Detection of extravasation of antineoplastic drugs by microwave radiometry // Cancer Lett. Jun. 1986. V. 31. № 3. P. 285–291.
  42. Jacobsen S., Stauffer P.R. Multifrequency radiometric determination of temperature profiles in a lossy homogeneous phantom using a dual-mode antenna with integral water bolus // IEEE Trans. Microw. Theory Techn. Jul. 2002. V. 50. № 7. P. 1737–1746.
  43. Mizushina S. et al. Non-invasive temperature profiling using multi-frequency microwave radiometry in the presence of water-filled bolus // IEICE Trans. Electron. May 1991. V. 74. № 5. P. 1293–1302.
  44. Hand J.W. et al. Monitoring of deep brain temperature in infants using multi-frequency microwave radiometry and thermal modelling // Phys. Med. Biol. 2001. V. 46. № 7. P. 1885–190.
  45. Moran D.S., Mendal L. Core temperature measurement // Sports Med. 2002. V. 32. № 14. P. 879–885. [Online]. Available: https:// www.ncbi.nlm.nih.gov/pubmed/12427049.
  46. Byrne C., Lim C.L. The ingestible telemetric body core temperature sensor: A review of validity and exercise applications // Brit. J. Sports Med. 2007. V. 41. № 3. P. 126–1.
  47. Wilkinson D.M. et al. The effect of cool water ingestion on gastrointestinal pill temperature // Med. Sci. Sports Exercise. Mar. 2008. V. 40. № 3. P. 523–528.
  48. Galiana G. et al. Accurate temperature imaging based on intermolecular coherences in magnetic resonance // Science. Oct. 2008. V. 322. № 5900. P. 421–424.
  49. Kraus J.D. Radio Astronomy, 2nd ed., Cygnus-Quasar Books. 1976. P. 1–3, 20–23, 66.
  50. Ulaby F.T., Moore R.K., Fung A.K. Microwave Remote Sensing: Active and Passive, V. 1: Microwave Remote Sensing Fundamentals and Radiometry, Artech House. 1981. P. 1–3, 20–24, 93–94, 112, 122–23.
  51. Archer F. et al. Microwave radiometric measurements of soil moisture at L-band and C-band using a rover and unmanned aerial system // Accepted for publication in IEEE Geoscience and Remote Sensing Letters. 2006. 5 p. (Q1)
  52. Сидоров И.А., Гудков А.Г., Новичихин Е.П., Леушин В.Ю., Хохлов Н.Ф., Болотов А.Г., Чижиков С.В. Результаты натурных экспериментов по дистанционному определению портретов влажности почвы (часть 1) // Нанотехнологии: разработка, применение – XXI век. 2022. Т. 14. № 4. С. 45–60. DOI: https://doi.org/10.18127/j22250980-202204-05.
  53. Shutko A.M. et al. Microwave Radiometry of Land and Water Surfaces // Theory to Practice, January 2014, Sofia, Publisher: Prof. Marina Drinova, Academic Publisher Editor: Prof. V.S. Verba, ac. Yu.V. Gulyaev, prof. A.M. Shutko, prof. V.F. Krapivin. ISBN: 978-954-322-708-2.
  54. Shutko A.M. et al. Practical Microwave Radiometric Risk Assesment (In English) // Prof. Marin Drinov Publ. House, Bulg. Academy of Sciences. 2010. 100 p.
  55. Novichikhin E.P. et al. Detection of a local source of heat in the depths of the human body by volumetric radiothermography // RENSIT. 2020. V. 12(2). P. 305–312. DOI: 10.17725/rensit.2020.12.305.
  56. Gudkov A.G. et al. Studies of a Microwave Radiometer Based on Integrated Circuits // Biomedical Engineering. 2020. P. 1-4.
  57. RES, Ltd. Training. Accessed: November 09, 2021. [Online]. Available: http://www.resltd.ru/eng/rtm/training.php.
  58. Vesnin S.G. et al. Portable microwave radiometer for wearable devices. Sensors and Actuators A: Physical. 2021. 318, 112506.
  59. Patent U.S. № 15/801,419. Vesnin S.G. 2018.
  60. Osipenkov V., Vesnin S.G. Microwave filters of parallel-cascade structure // IEEE transactions on microwave theory and techniques. Jul. 1994. V. 42. № 7. P. 1360–1367.
  61. Чижиков С.В., Соловьев Ю.В. Элементная база МИС СВЧ для микроволновой радиотермометрии // Нанотехнологии: разработка, применение – XXI век. 2020. Т. 12. № 2. С. 48–57.
  62. Chizhikov S.V., Solov’ev Yu.V., Gudkov A.G. Application of developed MIC LNA in microwave radiometry equipment. Journal of Physics Conference Series. 2020. 1695(1):012161.
  63. Tikhomirov V.G. et al. Monolithic transistor switch for microwave radiometry // 8 th International School and Conference on Optoelectronics, Photonics, Engineering and Nanostructures «Saint Petersburg OPEN 2021». BOOK of ABSTRACTS. 2021 P. 492–493.
  64. Klemetsen O., Jacobsen S. Improved radiometric performance attained by an elliptical microwave antenna with suction // IEEE Trans. Bomed. Engineering. 2012. V. 59(1). P. 263–271.
  65. Веснин С.Г., Агасиева С.В., Седанкин М.К., Леушин В.Ю., Сидоров И.А., Порохов И.О., Гудков Г.А. Построение гибких конформных антенн для измерения собственного излучения головного мозга // Нанотехнологии: разработка, применение – XXI век. 2022. Т. 14. № 4. С. 5–18. DOI: https://doi.org/10.18127/j22250980-202204-01.
  66. Beaucamp-Ricard C. et al. Temperature measurement by microwave radiometry // IEEE Trans. Instrument. Measurement. 2009. V. 58. № 5. P. 1712–1719.
  67. Tofighi M.-R. Characterization of biomedical antennas for microwave heating, radiometry, and implant communication applications // 12th Wireless and Microwave Technology Conference (WAMICONP). Clearwater Beach, 2011. P. 7.
  68. Patent US 5779635/K. Microwave detection apparatus for locating cancerous tumors particularly breast tumors. Carr. 14.07.98.
  69. Lee J.W. et al. Experimental investigation of the mammary gland tumour phantom for multifrequency microwave radio-thermometers // Medical and Biological Engineering and Computing. 2004. V. 42. № 5. P. 581–590.
  70. Vesnin S.G., Sedankin M.K., Chupina D.N. Application of modern technologies of mathematical simulation for the development of medical equipment // 11th IEEE Inter. Conference on AICT. 20-22 Sep. 2017. Moscow, Russia. P. 425–429.
  71. Jacobsen S. Microwave radiometry as a non-invasive temperature monitoring modality during superficial hyperthermia. http://cdn.intechopen.com/ pdfs/17007 /InTech-Non _invasive_temperature_moni toring_during_microwave _heating_ applying_a_miniaturized_radiometer.pdf[Электронный ресурс]-02.02.2013.
  72. Jacobsen S., Stauffer P.R., Rolfsnes H.O. Characteristics of microstrip muscle-loaded single-arm Archimedean spiral antenna as investigated by FDTD numerical computations // IEEE Transaction on Biomedical Engineering. 2005. V. 52. № 2. P. 321–330.
  73. Jacobsen S., Murberg A., Stauffer P. Characterization of a tranceiving antenna concept for microwave heating and thermometry of superficial tumors // Progress in Electromagnetics Research. 1998. V. 18. P. 105–125.
  74. Jacobsen S, Stauffer P. Can we settle with single-band radiometric temperature monitoring during hyperthermia treatment of chestwall recurrence of breast cancer using a dual-mode transceiving applicator? // Phys Med Biol. 2007. № 52. P. 911–928.
  75. Sunal A. et al. Design of spiral antennas for radiometric detection of tumors at microwave frequencies // Bioengineering Conference. Proceedings of the IEEE 32nd Annual Northeast. Easton (Pennsylvania). 2006. P. 99–100.
  76. Arunachalam K. et al. Modeling the detectability of vesicoureteral reflux using microwave radiometry // Phys. Med. Biol. 2010. V. 55(18). P. 5417–35. [PubMed: 20736499]
  77. Stauffer P. et al. Microwave radiometry for non-invasive detection of vesicoureteral reflux (VUR) following bladder warming // Proc SPIE. 2011; 7901: 79010V. PMCID: 3409575.
  78. Stauffer P.R. et al. Non-Invasive Measurement of Brain Temperature with Microwave Radiometry: Demonstration in a Head Phantom and Clinical Case The Neuroradiology Journal. 2014 Feb. 27(1):3-12. Epub 2014 Feb 24.
  79. Abufanas H. et al. New approach for design and verification of a wideband Archimedean spiral antenna for radiometric measurement in biomedical applications // 2015 German Microwave Conference. IEEE. 2015. P. 127–130.
  80. Tofighi M.R. Dual-mode planar applicator for simultaneous microwave heating and radiometric sensing // Electronics letters. 2012. V. 48. № 20. P. 1252–1253.
  81. Asimakis N.P., Karanasiou I.S., Uzunoglu N.K. Conformal L-notch patch antennas for human brain monitoring using the SAM head model // Electromagnetics in Advanced Applications, Torino. 2009. P. 214–217.
  82. Vanoverschelde C. et al. Miniature sensor for measurement and control of temperatures by microwave radiometry in medical applications // Microwave Symposium Digest, 1 IEEE MTT-S International. Phoenix (Arizona). 2001. V. 1. P. 155–158.
  83. Dubois L. et al. Contact-less sensors for temperature measurement by microwave radiometry in medical or industrial applications // Proceedings of ISAP. Niigata (Japan). 2007. P. 1262–1265.
  84. Cresson P.-Y. et al. Temperature measurement by microwave radiometry // IEEE International Instrumentation and Measurement Technology Conference. Victoria (Vancouver Island, Canada). 2008 P. 1344–1349.
  85. Sedankin M.K. et al. Intracavity Thermometry in Medicine. Biomedical Engineering. V. 55. № 3. 2021. P. 224–228.
  86. Sedankin M.K. et al. Development of a miniature microwave radiothermograph for monitoring the internal brain temperature // Eastern-European Journal of Enterprise Technologies. Jun.2018. V. 3. № 5. P. 26–36.
  87. Sedankin M.K. et al. Mathematical simulation of heat transfer processes in a breast with a malignant tumor // Biomedical Engineering. Sep. 2018. V. 52. № 3. P. 190–194.
  88. Rodrigues D.B. et al. Design and optimization of an ultra wideband and compact microwave antenna for radiometric monitoring of brain temperature // IEEE Transactions on Biomedical Engineering. Jul. 2014. V. 61. № 7. P. 2154–2160.
  89. Sedankin M.K. et al. Modeling of thermal radiation by the kidney in the microwave range // Biomedical Engineering. May 2019. V. 53. № 1. P. 60–65.
  90. Sedankin M.K. et al. Microwave radiometry of the pelvic organs // Biomedical Engineering. Nov. 2019. V. 53. № 4. P. 288–292.
  91. Sedankin M.K. et al. Development of patch textile antenna for medical robots // 2018 International conference on actual problems of electron devices engineering (APEDE). 27-28 Sept. 2018. Saratov, Russia. P. 413–420.
  92. Patent № KR20150066089A. Multi channel diagnostic device using radiometer for diagnosing breast disease early. 2013.
  93. Седанкин М.К., Веснин С.Г., Леушин В.Ю., Дудкин Д.И., Мышлецов И.И., Назаров В.Г., Агасиева С.В. Внутриполостная антенна для многоканального радиотермографа // Нанотехнологии: разработка, применение – XXI век. 2021. № 2. Т. 13. C. 36–44. DOI: https://doi.org/10.18127/j22250980-202102-04.
  94. Livanos N.A. et al. Design and interdisciplinary simulations of a hand-held device for internal-body temperature sensing using microwave radiometry // IEEE Sensors Journal. Mar. 2018. V. 18(6). P. 2421–2433.
  95. Bardati F., Marrocco G., Tognolatti P. New-born-infant brain temperature measurement by microwave radiometry // IEEE Antennas and Propagation Society International Symposium (IEEE Cat. № 02CH37313). 16-21 June 2002. San Antonio, TX, USA, V. 1. P. 811–814.
  96. Asimakis N.P., Karanasiou I.S., Uzunoglu N.K. Non-invasive microwave radiometric system for intracranial applications: A study using the conformal L-notch microstrip patch antenna // Progress In Electromagnetics Research. May 2011. V. 117. P. 83–101.
  97. Sugiura T. et al. Five-band microwave radiometer system for noninvasive brain temperature measurement in newborn babies: Phantom experiment and confidence interval // Radio Science. Oct. 2011. V. 46. № 5. P. 1–7.
  98. Sugiura T. et al. Five-band microwave radiometer system for non-invasive measurement of brain temperature in new-born infants: system calibration and its feasibility // The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1-5 Sept. 2004, San Francisco, CA, USA. V. 1. P. 2292–2295.
  99. Sedankin M.K. et al. Development and Optimization of an Ultra Wideband Miniature Medical Antenna for Radiometric Multi-Channel Multi-Frequency Thermal Monitoring // Physics and Engineering. (November 30, 2020). EUREKA. V. 6. P. 71–81. DOI: https://doi.org/10.21303/2461-4262.2020.001517.
  100. Vesnin S.G. et al. A Printed Antenna with an Infrared Temperature Sensor for a Medical Multichannel Microwave Radiometer // Biomedical Engineering. 2020. V. 54. № 4. P. 235–239. DOI 10.1007/s10527-020-10011-9.
  101. Sedankin M.K. et al. System of Rational Parameters of Antennas for Designing a Multi-channel Multi-frequency Medical Radiometer // 2020 International Conference on Actual Problems of Electron Devices Engineering (APEDE). 2020. P. 154–159. DOI: 10.1109/APEDE48864.2020.9255503.
  102. Sedankin M.K. et al. Development of patch textile antenna for medical robots // 2018 International conference on actual problems of electron devices engineering (APEDE). 27-28 Sept. 2018. Saratov, Russia. P. 413–420.
Дата поступления: 22.03.2023
Одобрена после рецензирования: 06.04.2023
Принята к публикации: 28.04.2023