А.G. Gudkov1, S.G. Vesnin2, V.Yu. Leushin3, I.А. Sidorov4, V.G. Tikhomirov5, М.К. Sedankin6,
S.V. Chizhikov7, R.V. Agandeev8, V.D. Sсhashurin9
1–4,6–9 Bauman Moscow State Technical University (Moscow, Russia)
5 Electronic Instrumentation at V.I. Ulyanov (Lenin) SPbGETU «LETI» (St. Petersburg, Russia)
8 JSC «NPI FIRMA HYPERION» (Moscow, Russia)
This work is devoted to the issues of microminiaturization of multichannel multi-frequency medical radiothermographs, which was carried out in several stages. The creation of complex technical systems requires a transition from the design and manufacture of individual parts of the system to the integrated design of the entire system. A system created from optimal parts is not optimal in general, therefore, this paper describes a step-by-step transition from a radiothermograph based on a conventional element base to a constructive design using a microwave MIC, which will lead to an expansion of its functionality and a significant reduction in size. The issues of increasing the noise immunity of the radiothermograph due to the use of optimal antenna-applicator designs are considered. The results of theoretical and experimental studies of the parameters of the microwave MIC for a radiothermograph are presented. The structural schemes of a multichannel multi-frequency radiothermograph are proposed and the ways of creating its design based on MIC-technologies are determined. The integrated design of the radiothermograph will allow achieving an optimal combination of cost and quality. This article discusses the use of affordable and inexpensive devices for the early diagnosis of a large number of diseases, as well as their use in personalized medicine.
Gudkov А.G., Vesnin S.G., Leushin V.Yu., Sidorov I.А., Tikhomirov V.G., Sedankin М.К., Chizhikov S.V., Agandeev R.V., Sсhashurin V.D. Microminiaturization of multichannel multi-frequency radiothermographs (part 1). Achievements of modern radioelectronics. 2023. V. 77. № 5. P. 48–63. DOI: https://doi.org/10.18127/j20700784-202305-04 [in Russian]
- Nyquist H. Thermal agitation of electric charge in conductors. Phys. Rev. 1928. V. 32. P. 110–113.
- Johnson J.B. Thermal agitation in conductors. Phys. Rev. 1928. № 32. P. 97–109.
- Dicke R. The measurement of thermal radiation at microwave frequencies. Review Science Instruments. 1946. V. 17. № 7. P. 268–275.
- Klemetsen O. Design and evaluation of medical microwave radiometer for observing temperature gradients subcutaneously in the human body. Phd thesis. University of Tromso, faculty of science department of physics and technology. Tromso. 2011.
- Park W., Jenq J. Total power radiometer for medical sensor application using matched and MICmatched noise sources. Sensors. 2017. V. 17. № 9. 2105.
- Barrett A., Myers P.C., Sadowsky N.L. Dedection of breast cancer by microwave radiometer. Radio Sci. 1977. V. 12. № 68. P. 167–171.
- Carr K.L. Microwave radiometry: Its importance to the detection of cancer. IEEE Trans. Microw. Theory Techn. Dec. 1989. V. 37. № 12. P. 1862–1869.
- Vesnin S. et al. Modern microwave thermometry for breast cancer. Journal of Molecular Imaging & Dynamics [Online]. 2017, Oct. 7(2). Available: https://www.longdom.org/open-access/modern-microwave-thermometry-for-breast-cancer-2155-9937-1000136.pdf
- Goryanin I. et al. Passive microwave radiometry in biomedical studies. Drug Discovery Today. Apr. 2020. V. 25(4). P. 757–763.
- Toutouzas K. et al. Noninvasive detection of increased carotid artery temperature in patients with coronary artery disease predicts major cardiovascular events at one year: Results from a prospective multicenter study. Atherosclerosis. Jul. 2017. V. 262. P. 25–30.
- Drakopoulou M. et al. The role of microwave radiometry in carotid artery disease. Diagnostic and clinical prospective. Current Opinion in Pharmacology. Apr. 2018. V. 39. P. 99–104.
- Groumpas E. et al. Real-time passive brain monitoring system using near-field microwave radiometry. IEEE Trans. on Biomedical Engineering. Apr. 2019. V. 67. № 1. P. 158–165.
- Kublanov V.S., Borisov V.I. Biophysical evaluation of microwave radiation for functional research of the human brain. Proc. IFMBE. 2017. P. 1045–1048.
- Gudkov A.G. et al. Use of multichannel microwave radiometry for functional diagnostics of the brain. Biomedical Engineering. Jul. 2019. V. 53. № 2. P. 108–111.
- Cheboksarov D.V. et al. Diagnostic opportunities of noninvasive brain thermomonitoring. Anesteziologiia i Reanimatologiia. Yan. 2015. V. 60 (1). P. 66–69.
- Shevelev O.A. et al. Therapeutic Hypothermia Systems. Biomed. Eng. 2021. № 54. P. 397–401.
- Rodrigues D.B. et al. Microwave radiometry for noninvasive monitoring of brain temperature. Emerging electromagnetic technologies for brain diseases diagnostics, monitoring and therapy, Springer, Cham. 2018. P. 87–127.
- Laskari K. et al. Joint microwave radiometry for inflammatory arthritis assessment. Rheumatology. Apr. 2020. V. 59 (4). P. 839–844.
- Ravi V.M., Sharma A.K., Arunachalam K. Pre‐clinical testing of microwave radiometer and a pilot study on the screening inflammation of knee joints. Bioelectromagnetics. Jul. 2019. V. 40. № 6. P. 402–411.
- Arunachalam K. et al. Detection of vesicoureteral reflux using microwave radiometry-system characterization with tissue phantoms. IEEE Transactions on biomedical engineering. 2011. T. 58. № 6. P. 1629–1636.
- Jacobsen S., Klemetsen Ø., Birkelund Y. Vesicoureteral reflux in young children: a study of radiometric thermometry as detection modality using an ex vivo porcine model. Physics in Medicine & Biology. Aug. 2012. V. 57. № 17. P. 5557.
- Crandall J.P. et al. Measurement of brown adipose tissue activity using microwave radiometry and 18F-FDG PET/CT. Journal of Nuclear Medicine. Aug. 2018. V. 59. № 8. P. 1243–1248.
- Andreev V.V., Barantsevich E.R. Treatment of acute and chronic pain syndromes in lumbosacral radiculopathy. Effect. Pharmacother. 2018. T. 4. P. 42–49.
- Tarakanov A.V. et al. Influence of Ambient Temperature on Recording of Skin and Deep Tissue Temperature in Region of Lumbar Spine. European Journal of Molecular &Clinical Medicine. 2020. T. 7(1). P. 21–26. DOI: https://doi.org/10.5334/ejmcm.274.
- Tarakanov A.V. et al. Microwave Radiometry (MWR) temperature measurement is related to symptom severity in patients with Low Back Pain (LBP). Journal of Bodywork and Movement Therapies. 2021. T. 26. P. 548–552.
- Osmonov B. et al. Passive Microwave Radiometry for the Diagnosis of Coronavirus Disease 2019 Lung Complications in Kyrgyzstan. Diagnostics. 2021. T. 11(2). P. 259.
- Momenroodaki P. Noninvasive internal body temperature tracking with near-field microwave radiometry. IEEE Trans. on Microwave Theory and Techniques. May 2018. V. 66 (5). P. 2535–2545.
- Stauffer P.R. et al. Stable microwave radiometry system for long term monitoring of deep tissue temperature. Energy-based Treatment of Tissue and Assessment VII. – International Society for Optics and Photonics. 2013. T. 8584. S. 85840R. Proc. SPIE 8584, Energy-based treatment of tissue and assessment VII, 26 February 2013, San Francisco, California, United States.
- Haines W. et al. Wireless system for continuous monitoring of core body temperature. Proc. IEEE MTT-S International Microwave Symposium (IMS). 4-9 June 2017. Honololu, HI, USA.
- Popovic Z., Momenroodaki P., Scheeler R. Toward wearable wireless thermometers for internal body temperature measurements. IEEE Communications Magazine. Oct. 2014. V. 52 (10). P. 118–125.
- Momenroodaki P., Haines W., Popovic Z. Non-invasive microwave thermometry of multilayer human tissues. Proc. IEEE MTT-S International Microwave Symposium (IMS). 4-9 June 2017. Honololu, HI, USA.
- Ravi V.M., Arunachalam K. A low noise stable radiometer front-end for passive microwave tissue thermometry. Journal of Electromagnetic Waves and Applications. 2019. V. 33(6). P. 743–758.
- Maccarini P.F. et al. A novel compact microwave radiometric sensor to noninvasively track deep tissue thermal profiles. 2015 European Microwave Conference (EuMC). 2015, September. P. 690–693.
- Gulyaev Yu.V., Godik E.E. Fizicheskie polya biologicheskih obektov. Vestnik AN SSSR. Seriya fizicheskaya. 1983. № 8. S. 118–125 (Gulyaev Yu.V., Godik E.E. Fizicheskie polya biologicheskikh ob"ektov. Vestnik AN SSSR. Seriya fizicheskaya. 1983. № 8. S. 118–125).
- Kublanov V.S. Radiophysical system for examining functional state of a patient's brain. Biomedical Engineering. 2009. T. 43. № 3. P. 114–119.
- Kublanov V.S., Borisov V.I. Features of Organization the Radiophysical Complex for Research of Functional Processes in the Brain Tissues. Proceedings 2015 International Conference on Biomedical Engineering and Computational Technologies (SIBIRCON). 2015 SIBIRCON / SibMedInfo. Technopark of Novosibirsk Akademgorodok. P. 93–98. IEEE Catalog Number: CFP1511E-ART. ISBN: 978-1-4673-9111-5.
- Kräuchi K. et al. Functional link between distal vasodilation and sleep-onset latency?. Amer. J. Physiol. Reg., Integr. Comparative Physiol. 2000. V. 278. № 3. P. R741–R74.
- Rosenthal N.E. et al. Effects of light treatment on core body temperature in seasonal affective disorder. Biol. Psychiatry. Jan. 1990. V. 27. № 1. P. 39–50.
- Gale J.E. et al. Disruption of circadian rhythms accelerates development of diabetes through pancreatic beta-cell loss and dysfunction. J. Biol. Rhythms. 2011. V. 26. № 5. p. 423–433.
- Jeyaraj D. et al. Circadian rhythms govern cardiac repolarization and arrhythmogenesis. Nature. 2012. v. 483. № 7387. P. 96–99.
- Shaeffer J. et al. Detection of extravasation of antineoplastic drugs by microwave radiometry. Cancer Lett. Jun. 1986. V. 31. № 3. P. 285–291.
- Jacobsen S., Stauffer P.R. Multifrequency radiometric determination of temperature profiles in a lossy homogeneous phantom using a dual-mode antenna with integral water bolus. IEEE Trans. Microw. Theory Techn. Jul. 2002. V. 50. № 7. P. 1737–1746.
- Mizushina S. et al. Non-invasive temperature profiling using multi-frequency microwave radiometry in the presence of water-filled bolus. IEICE Trans. Electron. May 1991. V. 74. № 5. P. 1293–1302.
- Hand J.W. et al. Monitoring of deep brain temperature in infants using multi-frequency microwave radiometry and thermal modelling. Phys. Med. Biol. 2001. V. 46. № 7. P. 1885–190.
- Moran D.S., Mendal L. Core temperature measurement. Sports Med. 2002. V. 32. № 14. P. 879–885. [Online]. Available: https:// www.ncbi.nlm.nih.gov/pubmed/12427049.
- Byrne C., Lim C.L. The ingestible telemetric body core temperature sensor: A review of validity and exercise applications. Brit. J. Sports Med. 2007. V. 41. № 3. P. 126–1.
- Wilkinson D.M. et al. The effect of cool water ingestion on gastrointestinal pill temperature. Med. Sci. Sports Exercise. Mar. 2008. V. 40. № 3. P. 523–528.
- Galiana G. et al. Accurate temperature imaging based on intermolecular coherences in magnetic resonance. Science. Oct. 2008. V. 322. № 5900. P. 421–424.
- Kraus J.D. Radio Astronomy, 2nd ed., Cygnus-Quasar Books. 1976. P. 1–3, 20–23, 66.
- Ulaby F.T., Moore R.K., Fung A.K. Microwave Remote Sensing: Active and Passive, V. 1: Microwave Remote Sensing Fundamentals and Radiometry, Artech House. 1981. P. 1–3, 20–24, 93–94, 112, 122–23.
- Archer F. et al. Microwave radiometric measurements of soil moisture at L-band and C-band using a rover and unmanned aerial system. Accepted for publication in IEEE Geoscience and Remote Sensing Letters. 2006. 5 p. (Q1)
- Sidorov I.A., Gudkov A.G., Novichikhin E.P., Leushin V.Yu., Khokhlov N.F., Bolotov A.G., Chizhikov S.V. Rezul'taty naturnykh eksperimentov po distantsionnomu opredeleniyu portretov vlazhnosti pochvy (chast' 1). Nanotekhnologii: razrabotka, primenenie – XXI vek. 2022. T. 14. № 4. S. 45–60. DOI: https://doi.org/10.18127/j22250980-202204-05. [in Russian]
- Shutko A.M. et al. Microwave Radiometry of Land and Water Surfaces. Theory to Practice, January 2014, Sofia, Publisher: Prof. Marina Drinova, Academic Publisher Editor: Prof. V.S. Verba, ac. Yu.V. Gulyaev, prof. A.M. Shutko, prof. V.F. Krapivin. ISBN: 978-954-322-708-2.
- Shutko A.M. et al. Practical Microwave Radiometric Risk Assesment (In English). Prof. Marin Drinov Publ. House, Bulg. Academy of Sciences. 2010. 100 p.
- Novichikhin E.P. et al. Detection of a local source of heat in the depths of the human body by volumetric radiothermography. RENSIT. 2020. V. 12(2). P. 305–312. DOI: 10.17725/rensit.2020.12.305.
- Gudkov A.G. et al. Studies of a Microwave Radiometer Based on Integrated Circuits. Biomedical Engineering. 2020. P. 1-4.
- RES, Ltd. Training. Accessed: November 09, 2021. [Online]. Available: http://www.resltd.ru/eng/rtm/training.php.
- Vesnin S.G. et al. Portable microwave radiometer for wearable devices. Sensors and Actuators A: Physical. 2021. 318, 112506.
- Patent U.S. № 15/801,419. Vesnin S.G. 2018.
- Osipenkov V., Vesnin S.G. Microwave filters of parallel-cascade structure. IEEE transactions on microwave theory and techniques. Jul. 1994. V. 42. № 7. P. 1360–1367.
- Chizhikov S.V., Solov'ev Yu.V. Elementnaya baza MIS SVCh dlya mikrovolnovoy radiotermometrii. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2020. T. 12. № 2. S. 48–57. [in Russian]
- Chizhikov S.V., Solov’ev Yu.V., Gudkov A.G. Application of developed MIC LNA in microwave radiometry equipment. Journal of Physics Conference Series. 2020. 1695(1):012161.
- Tikhomirov V.G. et al. Monolithic transistor switch for microwave radiometry. 8 th International School and Conference on Optoelectronics, Photonics, Engineering and Nanostructures «Saint Petersburg OPEN 2021». BOOK of ABSTRACTS. 2021 P. 492–493.
- Klemetsen O., Jacobsen S. Improved radiometric performance attained by an elliptical microwave antenna with suction. IEEE Trans. Bomed. Engineering. 2012. V. 59(1). P. 263–271.
- Vesnin S.G., Agasieva S.V., Sedankin M.K., Leushin V.Yu., Sidorov I.A., Porokhov I.O., Gudkov G.A. Postroenie gibkikh konformnykh antenn dlya izmereniya sobstvennogo izlucheniya golovnogo mozga. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2022. T. 14. № 4. S. 5–18. DOI: https://doi.org/10.18127/j22250980-202204-01. [in Russian]
- Beaucamp-Ricard C. et al. Temperature measurement by microwave radiometry. IEEE Trans. Instrument. Measurement. 2009. V. 58. № 5. P. 1712–1719.
- Tofighi M.-R. Characterization of biomedical antennas for microwave heating, radiometry, and implant communication applications. 12th Wireless and Microwave Technology Conference (WAMICONP). Clearwater Beach, 2011. P. 7.
- Patent US 5779635/K. Microwave detection apparatus for locating cancerous tumors particularly breast tumors. Carr. 14.07.98.
- Lee J.W. et al. Experimental investigation of the mammary gland tumour phantom for multifrequency microwave radio-thermometers. Medical and Biological Engineering and Computing. 2004. V. 42. № 5. P. 581–590.
- Vesnin S.G., Sedankin M.K., Chupina D.N. Application of modern technologies of mathematical simulation for the development of medical equipment. 11th IEEE Inter. Conference on AICT. 20-22 Sep. 2017. Moscow, Russia. P. 425–429.
- Jacobsen S. Microwave radiometry as a non-invasive temperature monitoring modality during superficial hyperthermia. http://cdn.intechopen.com/ pdfs/17007 /InTech-Non _invasive_temperature_moni toring_during_microwave _heating_ applying_a_miniaturized_radiometer.pdf[Elektronnyy resurs]-02.02.2013.
- Jacobsen S., Stauffer P.R., Rolfsnes H.O. Characteristics of microstrip muscle-loaded single-arm Archimedean spiral antenna as investigated by FDTD numerical computations. IEEE Transaction on Biomedical Engineering. 2005. V. 52. № 2. P. 321–330.
- Jacobsen S., Murberg A., Stauffer P. Characterization of a tranceiving antenna concept for microwave heating and thermometry of superficial tumors. Progress in Electromagnetics Research. 1998. V. 18. P. 105–125.
- Jacobsen S, Stauffer P. Can we settle with single-band radiometric temperature monitoring during hyperthermia treatment of chestwall recurrence of breast cancer using a dual-mode transceiving applicator?. Phys Med Biol. 2007. № 52. P. 911–928.
- Sunal A. et al. Design of spiral antennas for radiometric detection of tumors at microwave frequencies. Bioengineering Conference. Proceedings of the IEEE 32nd Annual Northeast. Easton (Pennsylvania). 2006. P. 99–100.
- Arunachalam K. et al. Modeling the detectability of vesicoureteral reflux using microwave radiometry. Phys. Med. Biol. 2010. V. 55(18). P. 5417–35. [PubMed: 20736499]
- Stauffer P. et al. Microwave radiometry for non-invasive detection of vesicoureteral reflux (VUR) following bladder warming. Proc SPIE. 2011; 7901: 79010V. PMCID: 3409575.
- Stauffer P.R. et al. Non-Invasive Measurement of Brain Temperature with Microwave Radiometry: Demonstration in a Head Phantom and Clinical Case The Neuroradiology Journal. 2014 Feb. 27(1): 3-12. Epub 2014 Feb 24.
- Abufanas H. et al. New approach for design and verification of a wideband Archimedean spiral antenna for radiometric measurement in biomedical applications. 2015 German Microwave Conference. IEEE. 2015. P. 127–130.
- Tofighi M.R. Dual-mode planar applicator for simultaneous microwave heating and radiometric sensing. Electronics letters. 2012. V. 48. № 20. P. 1252–1253.
- Asimakis N.P., Karanasiou I.S., Uzunoglu N.K. Conformal L-notch patch antennas for human brain monitoring using the SAM head model. Electromagnetics in Advanced Applications, Torino. 2009. P. 214–217.
- Vanoverschelde C. et al. Miniature sensor for measurement and control of temperatures by microwave radiometry in medical applications. Microwave Symposium Digest, 1 IEEE MTT-S International. Phoenix (Arizona). 2001. V. 1. P. 155–158.
- Dubois L. et al. Contact-less sensors for temperature measurement by microwave radiometry in medical or industrial applications. Proceedings of ISAP. Niigata (Japan). 2007. P. 1262–1265.
- Cresson P.-Y. et al. Temperature measurement by microwave radiometry. IEEE International Instrumentation and Measurement Technology Conference. Victoria (Vancouver Island, Canada). 2008 P. 1344–1349.
- Sedankin M.K. et al. Intracavity Thermometry in Medicine. Biomedical Engineering. V. 55. № 3. 2021. P. 224–228.
- Sedankin M.K. et al. Development of a miniature microwave radiothermograph for monitoring the internal brain temperature. Eastern-European Journal of Enterprise Technologies. Jun.2018. V. 3. № 5. P. 26–36.
- Sedankin M.K. et al. Mathematical simulation of heat transfer processes in a breast with a malignant tumor. Biomedical Engineering. Sep. 2018. V. 52. № 3. P. 190–194.
- Rodrigues D.B. et al. Design and optimization of an ultra wideband and compact microwave antenna for radiometric monitoring of brain temperature. IEEE Transactions on Biomedical Engineering. Jul. 2014. V. 61. № 7. P. 2154–2160.
- Sedankin M.K. et al. Modeling of thermal radiation by the kidney in the microwave range. Biomedical Engineering. May 2019. V. 53. № 1. P. 60–65.
- Sedankin M.K. et al. Microwave radiometry of the pelvic organs. Biomedical Engineering. Nov. 2019. V. 53. № 4. P. 288–292.
- Sedankin M.K. et al. Development of patch textile antenna for medical robots. 2018 International conference on actual problems of electron devices engineering (APEDE). 27-28 Sept. 2018. Saratov, Russia. P. 413–420.
- Patent № KR20150066089A. Multi channel diagnostic device using radiometer for diagnosing breast disease early. 2013.
- Sedankin M.K., Vesnin S.G., Leushin V.Yu., Dudkin D.I., Myshletsov I.I., Nazarov V.G., Agasieva S.V. Vnutripolostnaya antenna dlya mnogokanal'nogo radiotermografa. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2021. № 2. T. 13. C. 36–44. DOI: https://doi.org/10.18127/j22250980-202102-04. [in Russian]
- Livanos N.A. et al. Design and interdisciplinary simulations of a hand-held device for internal-body temperature sensing using microwave radiometry. IEEE Sensors Journal. Mar. 2018. V. 18(6). P. 2421–2433.
- Bardati F., Marrocco G., Tognolatti P. New-born-infant brain temperature measurement by microwave radiometry. IEEE Antennas and Propagation Society International Symposium (IEEE Cat. № 02CH37313). 16-21 June 2002. San Antonio, TX, USA, V. 1. P. 811–814.
- Asimakis N.P., Karanasiou I.S., Uzunoglu N.K. Non-invasive microwave radiometric system for intracranial applications: A study using the conformal L-notch microstrip patch antenna. Progress In Electromagnetics Research. May 2011. V. 117. P. 83–101.
- Sugiura T. et al. Five-band microwave radiometer system for noninvasive brain temperature measurement in newborn babies: Phantom experiment and confidence interval. Radio Science. Oct. 2011. V. 46. № 5. P. 1–7.
- Sugiura T. et al. Five-band microwave radiometer system for non-invasive measurement of brain temperature in new-born infants: system calibration and its feasibility. The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1-5 Sept. 2004, San Francisco, CA, USA. V. 1. P. 2292–2295.
- Sedankin M.K. et al. Development and Optimization of an Ultra Wideband Miniature Medical Antenna for Radiometric Multi-Channel Multi-Frequency Thermal Monitoring. Physics and Engineering. (November 30, 2020). EUREKA. V. 6. P. 71–81. DOI: https://doi.org/10.21303/2461-4262.2020.001517.
- Vesnin S.G. et al. A Printed Antenna with an Infrared Temperature Sensor for a Medical Multichannel Microwave Radiometer. Biomedical Engineering. 2020. V. 54. № 4. P. 235–239. DOI 10.1007/s10527-020-10011-9.
- Sedankin M.K. et al. System of Rational Parameters of Antennas for Designing a Multi-channel Multi-frequency Medical Radiometer. 2020 International Conference on Actual Problems of Electron Devices Engineering (APEDE). 2020. P. 154–159. DOI: 10.1109/APEDE48864.2020.9255503.
- Sedankin M.K. et al. Development of patch textile antenna for medical robots. 2018 International conference on actual problems of electron devices engineering (APEDE). 27-28 Sept. 2018. Saratov, Russia. P. 413–420.