Ю.В. Кольцов
Нижегородский научно-исследовательский приборостроительный институт (г. Н.Новгород, Россия)
koltzovyv@mail.ru
Постановка проблемы. Работа посвящена уникальным структурам – метаматериалам, при изучении которых экспериментально были выявлены новейшие эффекты их применения. Рассмотрение таких эффектов дает возможность по-новому взглянуть на практическое использование метаматериалов, а также стимулирует появление более совершенных технологий и новых идей применения метаматериалов, которые, при огромном разнообразии возможностей, способны на практике, например, полностью повторить работу живых организмов, хотя метаматериалы в природе не встречаются.
Цель. Подробно рассмотреть новейшие и наиболее интересные эффекты применения метаматериалов и показать изготовленные на их базе устройства в самых разных средах (в воздухе и воде) и диапазонах частот (электричество и звук, свет и инфракрасное излучение и пр.).
Результаты. Показано, что большое число новых эффектов с подробным описанием их особенностей позволяет говорить о широком применения метаматериалов в технике для замены традиционных (громоздких и тяжелых) устройств на новые, плоские, легкие и миниатюрные, а также о разработке принципиально новых устройств. Отмечено, что метаматериалы способны точно настраивать и контролировать распространение электромагнитных, оптических и акустических волн.
Практическая значимость. Метаматериалы можно настроить таким образом, что они начнут взаимодействовать не только со световым и тепловым, рентгеновским или ультрафиолетовым излучениями, но и с магнитным полем, а также порождать любопытные квантовые эффекты.
Кольцов Ю.В. Новейшие эффекты применения метаматериалов // Успехи современной радиоэлектроники. 2021. T. 75. № 7. С. 5–26. DOI: https://doi.org/10.18127/j20700784-202107-01
- Веселаго В.Г. Электродинамика веществ с одновременно отрицательными значениями ε и µ // Успехи физических наук. 1967. Т. 92. Июль. Вып. 3. № 7. С. 517–526.
- Фортов В.Е. Физика прекрасна своей непредсказуемостью // В мире науки. 2020. № 11.
- Пендри Дж., Смит Д. В поисках суперлинзы // В мире науки. 2006. Октябрь. № 10. С. 37–43.
- Cui T.J., Smith D.R., Liu R. Metamaterials: theory, design and applications. New York, NY: Springer–Verlag. 2010.
- In Memoriam Tatsuo Itoh // IEEE Microwave Magazine. 2021. June. P. 84–86, 106.
- Holloway C.L., Kuester E.F., Gordon J.A. et. al. An Overview of the Theory and Applications of Metasurfaces: The Two– Dimensional Equivalents of Metamaterials // IEEE Antennas and Propagation Magazine. 2012. April. V. 54. № 2. P. 10–35.
- Кольцов Ю.В. Метаматериальные технологии антенных решеток // Успехи современной радиоэлектроники. 2017. № 4. С. 30–47.
- Holloway C.L., Kuester E.F., Gordon J.A. et. al. An Overview of the Theory and Applications of Metasurfaces: The Two– Dimensional Equivalents of Metamaterials // IEEE Antennas and Propagation Magazine. 2012. April. V. 54. № 2. P. 10–35.
- Chang S., Guo X., Ni X. Optical metasurfaces: Progress and applications // Annual Review of Materials Research. 2018. July. V. 48. P. 279–302.
- Theory and phenomena of metamaterials / F. Capolino, Ed. CRC Press. 2017.
- Кирчанов В.С. Физические основы нанотехнологий фотоники и оптоинформатики. Учебное пособие. Пермь: Изд-во Перм. нац. иссл. политех. ун-та. 2019.
- Sakai O., Tachibana K. Plasmas as metamaterials: a review // Plasma Sources Science Technology. 2012. V. 21. № 1. P. 013001.
- Turpin J.P., Bossard J.A., Morgan K.L. et. al. Reconfigurable and tunable metamaterials: A review of the theory and applications // Int. Journal Antennas Propagation. 2014. V. 2014. Article number 429837.
- Oliveri G., Werner D.H., Massa A. Reconfigurable Electromagnetics Through Metamaterials –A Review // Proc. IEEE. 2015. July. V. 103. № 7. P. 1034–1056.
- Wang Z., Cheng F., Winsor T., Liu Y. Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications // Nanotechnology. 2016. V. 27. № 41. P. 412001.
- Shaltout A.M., Kinsey N., Kim J. et. al. Development of optical metasurfaces: emerging concepts and new materials // Proc. IEEE. 2016. V. 104. № 12. P. 2270–2287.
- Hedayati M.K., Elbahri M. Review of metasurface plasmonic structural color // Plasmonics. 2017. V. 12. № 5. P. 1463–79.
- Ding F., Pors A., Bozhevolnyi S.I. Gradient metasurfaces: a review of fundamentals and applications // Reports on Progress in Physics. 2017. V. 81. № 2. P. 026401.
- Ren X., Das R., Tran P. et. al. Auxetic metamaterials and structures: a review // Smart Materials Structures. 2018. V. 27. № 2.
- 023001.
- Yu X., Zhou J., Liang H. et. al. Mechanical metamaterials associated with stiffness, rigidity and compressibility: a brief review // Progress in Materials Science. 2018. V. 94. P. 114–73.
- Kamali S.M., Arbabi E., Arbabi A., Faraon A. A review of dielectric optical metasurfaces for wavefront control // Nanophotonics. 2018. V. 7. № 6. P. 1041–1068.
- Ding F., Yang Y., Deshpande R.A., Bozhevolnyi S.I. A review of gap–surface plasmon metasurfaces: fundamentals and applications // Nanophotonics. 2018. V. 7. № 6. P. 1129–1156.
- Bukhari S.S., Vardaxoglou J.Y., Whittow W. A metasurfaces review: definitions and applications // Applied Sciences. 2019. V. 9. № 13. P. 2727.
- Li C., Yu P., Huang Y. et. al. Dielectric metasurfaces: from wavefront shaping to quantum platforms // Progress in Surface Science. 2020. V. 95. № 2. P. 100584.
- Hu J., Bandyopadhyay S., Liu Y. A review on metasurface: from principle to smart metadevices // Frontiers in Physics. 2020. V. 8.
- 502.
- Jung J., Park H., Park J. et. al. Broadband metamaterials and metasurfaces: a review from the perspectives of materials and devices // Published Online: 2020–06–25, published by De Gruyter, Berlin/Boston.
- Zahra S., Ma L., Wang W. et. al. Electromagnetic Metasurfaces and Reconfigurable Metasurfaces: A Review // Frontiers in Physics. 2021. January 14.
- Chen M.K., Wu Y., Feng W.L. et. al. Principles, Functions, and Applications of Optical Meta–Lens // Advanced Optical Materials. 2021. 18 February. V. 9. № 4.
- Chen H.T., Padilla W.J., Zide J.M. et. al. Active terahertz metamaterial devices // Nature. 2006. V. 444. № 7119. P. 597–600.
- Cummer S.A., Christensen J., Alu A. Controlling sound with acoustic metamaterials // Nature Reviews Materials. 2016. V. 1. № 3.1–13.
- Cui T.J., Liu S., Zhang L. Information metamaterials and metasurfaces // Journal of Materials Chemistry C. 2017. March 14. V. 5. № 15. P. 3644–3668.
- Luo X. Subwavelength optical engineering with metasurface waves // Advanced Optical Materials. 2018. V. 6. P.1701201.
- Fan Y., Shen N., Zhang F. et. al. Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resonances // ACS Photonics. 2018. V. 5. № 4. P. 1612–1618.
- Yu P., Besteiro L.V., Huang Y. et. al. Broadband metamaterial absorbers // Advanced Optical Materials. 2019. V. 7. P.1800995.
- Li Y., Zhu K.J., Peng Y.G. et. al. Thermal meta–device in analogue of zero–index photonics // Nature Materials. 2019. V. 18. № 1.48–54.
- Bai X., Kong F., Sun Y. et. al. High–efficiency transmissive programmable metasurface for multimode OAM generation // Advanced Optical Materials. 2020. June 14. V. 8. P. 2000570 (1–9).
- Akram M.R., Ding G., Chen K. et. al. Ultrathin single layer metasurfaces with ultra–wideband operation for both transmission and reflection // Advanced Materials. 2020. V. 32. № 12. P. 1907308.
- Dai J.Y., Yang L.X., Ke J.C. et. al. High–efficiency synthesizer for spatial waves based on space–time–coding digital metasurface // Laser & Photonics Reviews. 2020. May 13. V. 14. № 6. P. 1900133 (1–14).
- Кольцов Ю.В., Кольцов Д.Ю. Линии ударной волны: динамика развития. Часть 1 // Нелинейный мир. 2020. Т. 18. № 2. С. 62–76.
- Кольцов Ю.В., Кольцов Д.Ю. Линии ударной волны: динамика развития. Часть 2 // Нелинейный мир. 2020. Т. 18. № 3. С. 51–64.
- Shadrivov I.V., Lapine M., Kivshar Yu.S. Nonlinear, Tunable and Active Metamaterials. Springer. 2015.
- Duchamp J.–M., Ferrari P., Fernandez M. et. al. Comparison of Fully Distributed and Periodically Loaded Nonlinear Transmission Lines // IEEE Trans. Microwave Theory Tech. 2003. April. V. 51. № 4. P. 1105–1116.
- Caloz C., Sanada A., Itoh T. A Novel Composite Right–/Left–Handed Coupled–Line Directional Coupler with Arbitrary Coupling Level and Broad Bandwidth // IEEE Trans. Microwave Theory Tech. 2004. March. V. 52. № 3. P. 980–992.
- Lai A., Caloz C. Itoh T. Composite Right/Left–Handed Transmission Line Metamaterials // IEEE Microwave Magazine. 2004. V. 5. № 3. P. 34–50.
- Caloz C., Itoh T. Metamaterials for high–frequency electronics // Proc. IEEE. 2005. V. 93. № 10. P. 1744–1752.
- Kozyrev A.B., van der Weide D.W. Nonlinear wave propagation phenomena in left–handed transmission line media // IEEE Trans. Microwave Theory Techniques. 2005. V. 53. № 1. P. 238–245.
- Kozyrev A.B., Kim H., Karbassi A., van der Weide D.W. Wave Propagation in Nonlinear Left–Handed Transmission Line Media // Applied Physics Letters. 2005. V. 87. P. 121109–1-121109–3.
- Caloz C., Itoh T. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. Wiley: New Jersey. 2006.
- Tang W., Kim H. Low Spurious, Broadband Frequency Translator Using Left–Handed Nonlinear Transmission Line // IEEE Microwave and Wireless Components Letters. 2009. April. V. 19. № 4. P. 221–223.
- Anghel A., Cacoveanu R. A New Microstrip Composite Right/Left–Handed Transmission Line Implementation // U.P.B. Scientific Bulletin. Series C: Electrical Engineering and Computer Science. 2011. V. 73. № 4. P. 141–150.
- Fallhpour M., Zoughi R. Antenna Miniaturization Techniques: A Review of Topology– and Material–Based Methods // IEEE Antennas and Propagation Magazine. 2018. February. V. 60. № 1. P. 38–50.
- IEEE Transactions on Antennas and Propagation. 2003. October. V. 51. № 10. Pt. 1.
- Dong Y., Itoh T. Metamaterial–based antennas // Proc. IEEE. 2012. V. 100. № 7. P. 2271–2285.
- Reconfigurable Electromagnetics through Metamaterials. Special Issue // Int. Journal Antennas Propagation. G. Oliveri, D. Werner, K. Bilotti, C. Craeyer, Eds. 2014. V. 2014. article ID 215394 (Hindawi Publishing Corp.)
- Huang Y., Yang L., Li J. et. al. Polarization conversion of metasurface for the application of wide band low–profile circular polarization slot antenna // Applied Physics Letters. 2016. V. 109. P. 054101.
- Huang Y., Li J., Xu H.X. et. al. Experimental demonstration of microwave two–dimensional Airy beam generation based on single– layer metasurface // IEEE Trans. Antennas Propagation. 2020. V. 68. № 11. P. 7507–7516.
- Castaldi G., Zhang L., Moccia M. et. al. Joint multi–frequency beam shaping and steering via space–time–coding digital metasurfaces // Advanced Functional Materials. 2020. P. 202007620.
- Imani M.F., Gollub J.N., Yurduseven O. et. al. Review of metasurface antennas for computational microwave imaging // IEEE Trans. Antennas Propagation. 2020. V. 68. № 3. P. 1860–1875.
- Iyer A.K., Alu A., Epstein A. Metamaterials and Metasurfaces – Historical Context, Recent Advances, and Future Directions // IEEE Trans. Antennas Propagation. 2020. March. V. 68. № 3. P. 1223–1231.
- Acharya R., Jakhar S., Kumar D., Sharma D. A Review on Antenna Application of Metamaterials // IOSR Journal of Electronics and Communication Engineering (IOSR–JECE). 2017. ver. I (September–October). V. 12. № 5. P. 6–8.
- Rani R., Kaur P., Verma N. Metamaterials and Their Applications in Patch Antenna: A Review // Inter. Journal Hybrid Information Technology. 2015. November. V. 8. № 11. P. 199–212.
- Reddy A.P., Muthusamy P. A Review on UWB Metamaterial Antenna // Innovations in Electronics and Communication Engineering. Springer Nature Switzerland AG, 2020. P. 271–277.
- Krzysztofik W.J., Caj T.N. Metamaterials in Application to Improve Antenna Parameters. Capter 4 // In book: Metamaterials and Metasurfaces / J. Canet–Ferrer, Ed. IntechOpen, 2019. January 3.
- Griffin M. Researchers created a digital metamaterial to create better cloaking devices // World Futures Forum. 2019. November 26.
- Cui T.J., Qi M.Q., Wan X. et. al. Coding metamaterials, digital metamaterials and programmable metamaterials // Nature. 2014. October. V. 3. P. 218.
- Liaskos C., Pyrialakos G.G., Pitilakis A. et.al. The Internet of Metamaterial Things and Their Software Enablers // ITU Journal on Future and Evolving Technologies. 2020. 11 December. V. 1. № 1. (23PP.)
- Xie Y., Wang W., Chen H. et. al. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface // Nature Communications. 2014. V. 5. Article number: 5553. P. 1–5.
- Cummer S.A., Christensen J., Alu A. Controlling sound with acoustic metamaterials // Nature Reviews Materials. 2016. V. 1. Article number: 16001.
- Ma G., Sheng P. Acoustic metamaterials: From local resonances to broad horizons // Science Advances. 2016. February 26. V. 2. № 2. P. 1501595.
- Assouar B., Liang B., Wu Y. et. al. Acoustic metasurfaces // Nature Reviews Materials. 2018. V. 3. P. 460–472.
- Zhu Y., Hu J., Fan X. et. al. Fine manipulation of sound via lossy metamaterials with independent and arbitrary reflection amplitude and phase // Nature Communications. 2018. V. 9. Article number: 1632 (1–9).
- Li J., Shen C., Díaz–Rubio A. et. al. Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering– free manipulation of acoustic wavefronts // Nature Communications. 2018. V. 9. Article number: 1342 (1–9).
- Jiménez–Gambín S., Jiménez N., Camarena F. Transcranial focusing of ultrasonic vortices by acoustic holograms // Physical Review Applied. 2020. November 30. V. 14. P. 054070.
- Surjadi J., Gao L., Du H., Li X. Mechanical Metamaterials and Their Engineering Applications // Advanced Engineering Materials. 2019. January. V. 21. № 3. P. 1800864 (1–37).
- Kadic M., Buckmann T., Schittny R., Wegener M. Metamaterials beyond electromagnetism // Reports on Progress in Physics. 2013. November. V. 76. № 12. P. 126501 (34PP).
- Yang S., Liu P., Yang M. et. al. From Flexible and Stretchable Meta–Atom to Metamaterial: A Wearable Microwave Meta–Skin with Tunable Frequency Selective and Cloaking Effects // Scientific Reports. 2016. 23 February. V. 6. № 1. Article number 21921.
- Advances in Mechanics of Microstructured Media and Structures / Dell'Isola F., Eremeyev V., Porubov A.V., Eds. Springer. 2018.
- Ren X., Das R., Tran P. et. al. Auxetic metamaterials and structures: A review // Smart Materials and Structures. 2018. V. 27. № 2. P. 23001.
- Jiang Y., Li Y. 3D printed auxetic mechanical metamaterial with chiral cells and re–entrant cores // Scientific Reports. 2018. February. V. 8. Article number 2397.
- Kelkar P.U., Kim H.S., Cho K.-H. et. al. Cellular Auxetic Structures for Mechanical Metamaterials: A Review // Sensors. 2020. V. 20. № 11. P. 3132.
- Yu N., Gevenet P., Aieta F. et. al. Flat optics: Controlling wavefronts with optical antenna metasurfaces // IEEE Journal of Selected Topics in Quantum Electronics. 2013. May–June. V. 19. № 3. Article number: 4700423.
- Yu N., Capasso F. Flat optics with designer metasurfaces // Nature Materials. 2014. January 23. V. 13. P. 139–150.
- Pell R. Light–bending metasurfaces open new opportunities in advanced imaging, display // eeNews Analog. 2017. September 06.
- Lin D., Melli M., Poliakov E. et.al. Optical metasurfaces for high angle steering at visible wavelengths // Scientific Reports. 2017. May 23. V. 7. № 1. Article number 2286.
- Pell R. Broadband metalens opens new possibilities in virtual, augmented reality // Smart2zero. 2018. January 05.
- Single Metalens Focuses all Colors of the Spectrum in one Point // Photonics Spectra. 2018. April. V. 52. № 4.
- Chen W.T., Zhu A.Y., Sanjeev V. et. al. A broadband achromatic metalens for focusing and imaging in the visible // Nature Nanotechnology. 2018. January 01. V. 13. P. 220–226.
- Key Metamaterial Patent to Fractal Antenna Systems // Business Wire. 2016. October 19.
- Wang B. Fractal Antenna claims benefits of metamaterial antennas // Nextbigfuture. 2010. November 22.
- Flaherty N. Fractal metamaterial startup demos technology for wireless charging // Smart2zero.com. 2018. January 16.
- Fractal Metamaterials. URL: https://www.fractenna.com/our/metamaterials.html
- FRACTAL’s Metamaterial–Based Flat Lens to Receive Patent // Business Wire. 2018. March 01.
- Metamaterial Antenna Technology Surpasses Yagis, Receives Patent // Business Wire. 2019. June 12.
- Chamberlain K. Fractal antenna design offers alternative to the Yagi–Uda // Fierce Wireless. 2019. June 17.
- Fractal’s Metamaterial Antenna Technology Offers Superior Alternative to Yagis // Everything RF. 2019. June 13.
- Huang X., Xiao S., Ye D. et. al. Fractal plasmonic metamaterials for subwavelength imaging // Optical Express. 2010. V. 18. № 10.10377–10387.
- Werner D.H., Ganguly S. An overview of fractal antenna engineering research // IEEE Antennas Propagation Magazine. 2003. V. 45. № 1. P. 38–57.
- A marriage of light–manipulation technologies // Solid State Technology. Semiconductor Digest. 2018. March 8.
- Wallance J. Harvard and Argonne National Lab cooperate to create MEMS–scanning metalenses // Laser Focus World Magazine. 2018. February 20.
- Happich J. Researchers aim for MEMS–based reconfigurable metalenses // eeNews Europe. 2018. March 26.
- Roy T., Zhang S., Jung I.W. et. al. Dynamic metasurface lens based on MEMS technology // APL Photonics. 2018. V. 3. № 2. Р. 021302.
- Wallance J. First broadband optical metalens also focuses arbitrary polarization states // Laser Focus World Magazine. 2018. March 10.
- Overton G. Metamaterial solar reflectors remove heat from spacecraft and satellites // Laser Focus World Magazine. 2018. April 28.
- Sun K., Riedel C.A., Wang Y., Urbani A. et. al. Metasurface Optical Solar Reflectors Using AZO Transparent Conducting Oxides for Radiative Cooling of Spacecraft // ACS Photonics. 2017. November 27. V. 5. № 2.