Journal Achievements of Modern Radioelectronics №7 for 2021 г.
Article in number:
Newest effects of using metamaterials
Type of article: overview article
DOI: https://doi.org/10.18127/j20700784-202107-01
UDC: 537.86:620.22–022.532
Authors:

Yu.V. Koltzov

Nizhegorodskiy Research Institute (Nizhny Novgorod, Russia)

koltzovyv@mail.ru

Abstract:

The article is dedicated to unique structures – metamaterials – fantastic opportunities which allowed experimentally identify the newest effects of their application.

Considered in detail the most interesting effects using metamaterials and manufactured devices based on them in a wide variety of environments (in air and water) and frequency ranges (electricity and sound, light and infrared radiation, etc.).

A large number of newest effects with a detailed description of their features allow us to talk about the widespread use of metamaterials in technology to replace traditional bulky and heavy devices with new flat, lightweight and miniature devices as well as the  development of fundamentally new devices. Metamaterials are able to fine tune and control the propagation of electromagnetic, optical and acoustic waves, they have mechanical applications.

Consideration of the newest meta-effects makes it possible take a fresh look at the practical use of metamaterials as well as stimulates the emergence of more advanced technologies and new ideas for the use of metamaterials which, with a huge variety of possibilities, are able in practice, for example, to completely repeat the work of living organisms.

Experiments in recent years show that metamaterials can be configured in such a way that they begin to interact not only with light and thermal, X-ray or ultraviolet radiation but also with a magnetic field as well as generate curious quantum effects. The newest experiments create the basis for large-scale industrial production of various devices based on metamaterials.

Pages: 5-26
For citation

Koltzov Yu.V. Newest effects of using metamaterials. Achievements of modern radioelectronics. 2021. V. 75. № 7. P. 5–26. DOI: https://doi.org/10.18127/j20700784-202107-01 [in Russian]

References
  1. Veselago V.G. Elektrodinamika veshchestv s odnovremenno otritsatel'nymi znacheniyami ε i µ. Uspekhi fizicheskikh nauk. 1967. T. 92. Iyul'. V. 3. № 7. S. 517–526. [in Russian]
  2. Fortov V.E. Fizika prekrasna svoey nepredskazuemost'yu. V mire nauki. 2020. № 11. [in Russian]
  3. Pendri Dzh., Smit D. V poiskakh superlinzy. V mire nauki. 2006. Oktyabr'. № 10. S. 37–43. [in Russian]
  4. Cui T.J., Smith D.R., Liu R. Metamaterials: theory, design and applications. New York, NY: Springer–Verlag. 2010.
  5. In Memoriam Tatsuo Itoh. IEEE Microwave Magazine. 2021. June. P. 84–86, 106.
  6. Holloway C.L., Kuester E.F., Gordon J.A. et. al. An Overview of the Theory and Applications of Metasurfaces: The Two–Dimensional Equivalents of Metamaterials. IEEE Antennas and Propagation Magazine. 2012. April. V. 54. № 2. P. 10–35.
  7. Kol'tsov Yu.V. Metamaterial'nye tekhnologii antennykh reshetok. Uspekhi sovremennoy radioelektroniki. 2017. № 4. S. 30–47. [in Russian]
  8. Holloway C.L., Kuester E.F., Gordon J.A. et. al. An Overview of the Theory and Applications of Metasurfaces: The Two–Dimensional Equivalents of Metamaterials. IEEE Antennas and Propagation Magazine. 2012. April. V. 54. № 2. P. 10–35.
  9. Chang S., Guo X., Ni X. Optical metasurfaces: Progress and applications. Annual Review of Materials Research. 2018. July. V. 48. P. 279–302. 
  10. Theory and phenomena of metamaterials. F. Capolino, Ed. CRC Press. 2017.
  11. Kirchanov V.S. Fizicheskie osnovy nanotekhnologiy fotoniki i optoinformatiki. Ucheb. posobie. Perm': Izd-vo Perm. nats. issl. politekh. un-ta. 2019. [in Russian]
  12. Sakai O., Tachibana K. Plasmas as metamaterials: a review. Plasma Sources Science Technology. 2012. V. 21. № 1. P. 013001.
  13. Turpin J.P., Bossard J.A., Morgan K.L. et. al. Reconfigurable and tunable metamaterials: A review of the theory and applications. Int. Journal Antennas Propagation. 2014. V. 2014. Article number 429837.
  14. Oliveri G., Werner D.H., Massa A. Reconfigurable Electromagnetics Through Metamaterials –A Review. Proc. IEEE. 2015. July. V. 103. № 7. P. 1034–1056.
  15. Wang Z., Cheng F., Winsor T., Liu Y. Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications. Nanotechnology. 2016. V. 27. № 41. P. 412001.
  16. Shaltout A.M., Kinsey N., Kim J. et. al. Development of optical metasurfaces: emerging concepts and new materials. Proc. IEEE. 2016. V. 104. № 12. P. 2270–2287.
  17. Hedayati M.K., Elbahri M. Review of metasurface plasmonic structural color. Plasmonics. 2017. V. 12. № 5. P. 1463–79.
  18. Ding F., Pors A., Bozhevolnyi S.I. Gradient metasurfaces: a review of fundamentals and applications. Reports on Progress in Physics. 2017. V. 81. № 2. P. 026401.
  19. Ren X., Das R., Tran P. et. al. Auxetic metamaterials and structures: a review. Smart Materials Structures. 2018. V. 27. № 2.
    1. 023001.
  20. Yu X., Zhou J., Liang H. et. al. Mechanical metamaterials associated with stiffness, rigidity and compressibility: a brief review. Progress in Materials Science. 2018. V. 94. P. 114–73.
  21. Kamali S.M., Arbabi E., Arbabi A., Faraon A. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics. 2018. V. 7. № 6. P. 1041–1068.
  22. Ding F., Yang Y., Deshpande R.A., Bozhevolnyi S.I. A review of gap–surface plasmon metasurfaces: fundamentals and applications. Nanophotonics. 2018. V. 7. № 6. P. 1129–1156.
  23. Bukhari S.S., Vardaxoglou J.Y., Whittow W. A metasurfaces review: definitions and applications. Applied Sciences. 2019. V. 9. № 13.2727.
  24. Li C., Yu P., Huang Y. et. al. Dielectric metasurfaces: from wavefront shaping to quantum platforms. Progress in Surface Science. 2020. V. 95. № 2. P. 100584.
  25. Hu J., Bandyopadhyay S., Liu Y. A review on metasurface: from principle to smart metadevices. Frontiers in Physics. 2020. V. 8.502.
  26. Jung J., Park H., Park J. et. al. Broadband metamaterials and metasurfaces: a review from the perspectives of materials and devices. Published Online: 2020–06–25, published by De Gruyter, Berlin/Boston.
  27. Zahra S., Ma L., Wang W. et. al. Electromagnetic Metasurfaces and Reconfigurable Metasurfaces: A Review. Frontiers in Physics. 2021. January 14. 
  28. Chen M.K., Wu Y., Feng W.L. et. al. Principles, Functions, and Applications of Optical Meta–Lens. Advanced Optical Materials. 2021. 18 February. V. 9. № 4.
  29. Chen H.T., Padilla W.J., Zide J.M. et. al. Active terahertz metamaterial devices. Nature. 2006. V. 444. № 7119. P. 597–600.
  30. Cummer S.A., Christensen J., Alu A. Controlling sound with acoustic metamaterials. Nature Reviews Materials. 2016. V. 1. № 3. P. 1–13.
  31. Cui T.J., Liu S., Zhang L. Information metamaterials and metasurfaces. Journal of Materials Chemistry C. 2017. March 14. V. 5. № 15. P. 3644–3668.
  32. Luo X. Subwavelength optical engineering with metasurface waves. Advanced Optical Materials. 2018. V. 6. P.1701201.
  33. Fan Y., Shen N., Zhang F. et. al. Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resonances. ACS Photonics. 2018. V. 5. № 4. P. 1612–1618.
  34. Yu P., Besteiro L.V., Huang Y. et. al. Broadband metamaterial absorbers. Advanced Optical Materials. 2019. V. 7. P.1800995.
  35. Li Y., Zhu K.J., Peng Y.G. et. al. Thermal meta–device in analogue of zero–index photonics. Nature Materials. 2019. V. 18. № 1. P. 48–54.
  36. Bai X., Kong F., Sun Y. et. al. High–efficiency transmissive programmable metasurface for multimode OAM generation. Advanced Optical Materials. 2020. June 14. V. 8. P. 2000570 (1–9).
  37. Akram M.R., Ding G., Chen K. et. al. Ultrathin single layer metasurfaces with ultra–wideband operation for both transmission and reflection. Advanced Materials. 2020. V. 32. № 12. P. 1907308.
  38. Dai J.Y., Yang L.X., Ke J.C. et. al. High–efficiency synthesizer for spatial waves based on space–time–coding digital metasurface. Laser & Photonics Reviews. 2020. May 13. V. 14. № 6. P. 1900133 (1–14).
  39. Kol'tsov Yu.V., Kol'tsov D.Yu. Linii udarnoy volny: dinamika razvitiya. Chast' 1. Nelineynyy mir. 2020. T. 18. № 2. S. 62–76. [in Russian] 40. Kol'tsov Yu.V., Kol'tsov D.Yu. Linii udarnoy volny: dinamika razvitiya. Chast' 2. Nelineynyy mir. 2020. T. 18. № 3. S. 51–64. [in Russian]
  40. Shadrivov I.V., Lapine M., Kivshar Yu.S. Nonlinear, Tunable and Active Metamaterials. Springer. 2015.
  41. Duchamp J.–M., Ferrari P., Fernandez M. et. al. Comparison of Fully Distributed and Periodically Loaded Nonlinear Transmission Lines. IEEE Trans. Microwave Theory Tech. 2003. April. V. 51. № 4. P. 1105–1116.
  42. Caloz C., Sanada A., Itoh T. A Novel Composite Right–/Left–Handed Coupled–Line Directional Coupler with Arbitrary Coupling Level and Broad Bandwidth. IEEE Trans. Microwave Theory Tech. 2004. March. V. 52. № 3. P. 980–992.
  43. Lai A., Caloz C. Itoh T. Composite Right/Left–Handed Transmission Line Metamaterials. IEEE Microwave Magazine. 2004. V. 5. № 3. P. 34–50.
  44. Caloz C., Itoh T. Metamaterials for high–frequency electronics. Proc. IEEE. 2005. V. 93. № 10. P. 1744–1752.
  45. Kozyrev A.B., van der Weide D.W. Nonlinear wave propagation phenomena in left–handed transmission line media. IEEE Trans. Microwave Theory Techniques. 2005. V. 53. № 1. P. 238–245.
  46. Kozyrev A.B., Kim H., Karbassi A., van der Weide D.W. Wave Propagation in Nonlinear Left–Handed Transmission Line Media. Applied Physics Letters. 2005. V. 87. P. 121109-1–121109-3.
  47. Caloz C., Itoh T. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. Wiley: New Jersey. 2006.
  48. Tang W., Kim H. Low Spurious, Broadband Frequency Translator Using Left–Handed Nonlinear Transmission Line. IEEE Microwave and Wireless Components Letters. 2009. April. V. 19. № 4. P. 221–223.
  49. Anghel A., Cacoveanu R. A New Microstrip Composite Right/Left–Handed Transmission Line Implementation. U.P.B. Scientific Bulletin. Series C: Electrical Engineering and Computer Science. 2011. V. 73. № 4. P. 141–150.
  50. Fallhpour M., Zoughi R. Antenna Miniaturization Techniques: A Review of Topology– and Material–Based Methods. IEEE Antennas and Propagation Magazine. 2018. February. V. 60. № 1. P. 38–50.
  51. IEEE Transactions on Antennas and Propagation. 2003. October. V. 51. № 10. Pt. 1.
  52. Dong Y., Itoh T. Metamaterial–based antennas. Proc. IEEE. 2012. V. 100. № 7. P. 2271–2285.
  53. Reconfigurable Electromagnetics through Metamaterials. Special Issue. Int. Journal Antennas Propagation. G. Oliveri, D. Werner, K. Bilotti, C. Craeyer, Eds. 2014. V. 2014. article ID 215394 (Hindawi Publishing Corp.)
  54. Huang Y., Yang L., Li J. et. al. Polarization conversion of metasurface for the application of wide band low–profile circular polarization slot antenna. Applied Physics Letters. 2016. V. 109. P. 054101.
  55. Huang Y., Li J., Xu H.X. et. al. Experimental demonstration of microwave two–dimensional Airy beam generation based on single–layer metasurface. IEEE Trans. Antennas Propagation. 2020. V. 68. № 11. P. 7507–7516.
  56. Castaldi G., Zhang L., Moccia M. et. al. Joint multi–frequency beam shaping and steering via space–time–coding digital metasurfaces. Advanced Functional Materials. 2020. P. 202007620.
  57. Imani M.F., Gollub J.N., Yurduseven O. et. al. Review of metasurface antennas for computational microwave imaging. IEEE Trans. Antennas Propagation. 2020. V. 68. № 3. P. 1860–1875.
  58. Iyer A.K., Alu A., Epstein A. Metamaterials and Metasurfaces – Historical Context, Recent Advances, and Future Directions. IEEE Trans. Antennas Propagation. 2020. March. V. 68. № 3. P. 1223–1231.
  59. Acharya R., Jakhar S., Kumar D., Sharma D. A Review on Antenna Application of Metamaterials. IOSR Journal of Electronics and Communication Engineering (IOSR–JECE). 2017. ver. I (September–October). V. 12. № 5. P. 6–8.
  60. Rani R., Kaur P., Verma N. Metamaterials and Their Applications in Patch Antenna: A Review. Inter. Journal Hybrid Information Technology. 2015. November. V. 8. № 11. P. 199–212.
  61. Reddy A.P., Muthusamy P. A Review on UWB Metamaterial Antenna. Innovations in Electronics and Communication Engineering. Springer Nature Switzerland AG, 2020. P. 271–277.                                                
  62. Krzysztofik W.J., Caj T.N. Metamaterials in Application to Improve Antenna Parameters. Capter 4. In book: Metamaterials and Metasurfaces. J. Canet–Ferrer, Ed. IntechOpen, 2019. January 3.
  63. Griffin M. Researchers created a digital metamaterial to create better cloaking devices. World Futures Forum. 2019. November 26.
  64. Cui T.J., Qi M.Q., Wan X. et. al. Coding metamaterials, digital metamaterials and programmable metamaterials. Nature. 2014. October. V. 3. P. 218.
  65. Liaskos C., Pyrialakos G.G., Pitilakis A. et.al. The Internet of Metamaterial Things and Their Software Enablers. ITU Journal on Future and Evolving Technologies. 2020. 11 December. V. 1. № 1. (23PP.)
  66. Xie Y., Wang W., Chen H. et. al. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nature Communications. 2014. V. 5. Article number: 5553. P. 1–5.
  67. Cummer S.A., Christensen J., Alu A. Controlling sound with acoustic metamaterials. Nature Reviews Materials. 2016. V. 1. Article number: 16001.
  68. Ma G., Sheng P. Acoustic metamaterials: From local resonances to broad horizons. Science Advances. 2016. February 26. V. 2. № 2. P. 1501595.
  69. Assouar B., Liang B., Wu Y. et. al. Acoustic metasurfaces. Nature Reviews Materials. 2018. V. 3. P. 460–472.
  70. Zhu Y., Hu J., Fan X. et. al. Fine manipulation of sound via lossy metamaterials with independent and arbitrary reflection amplitude and phase. Nature Communications. 2018. V. 9. Article number: 1632 (1–9).
  71. Li J., Shen C., Díaz–Rubio A. et. al. Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering– free manipulation of acoustic wavefronts. Nature Communications. 2018. V. 9. Article number: 1342 (1–9).
  72. Jiménez–Gambín S., Jiménez N., Camarena F. Transcranial focusing of ultrasonic vortices by acoustic holograms. Physical Review  Applied. 2020. November 30. V. 14. P. 054070.
  73. Surjadi J., Gao L., Du H., Li X. Mechanical Metamaterials and Their Engineering Applications. Advanced Engineering Materials. 2019. January. V. 21. № 3. P. 1800864 (1–37).
  74. Kadic M., Buckmann T., Schittny R., Wegener M. Metamaterials beyond electromagnetism. Reports on Progress in Physics. 2013.  November. V. 76. № 12. P. 126501 (34PP).
  75. Yang S., Liu P., Yang M. et. al. From Flexible and Stretchable Meta–Atom to Metamaterial: A Wearable Microwave Meta–Skin with Tunable Frequency Selective and Cloaking Effects. Scientific Reports. 2016. 23 February. V. 6. № 1. Article number 21921.
  76. Advances in Mechanics of Microstructured Media and Structures. Dell'Isola F., Eremeyev V., Porubov A.V., Eds. Springer. 2018.
  77. Ren X., Das R., Tran P. et. al. Auxetic metamaterials and structures: A review. Smart Materials and Structures. 2018. V. 27. № 2. P. 23001.
  78. Jiang Y., Li Y. 3D printed auxetic mechanical metamaterial with chiral cells and re–entrant cores. Scientific Reports. 2018. February. V. 8. Article number 2397.
  79. Kelkar P.U., Kim H.S., Cho K.-H. et. al. Cellular Auxetic Structures for Mechanical Metamaterials: A Review. Sensors. 2020. V. 20. № 11. P. 3132.
  80. Yu N., Gevenet P., Aieta F. et. al. Flat optics: Controlling wavefronts with optical antenna metasurfaces. IEEE Journal of Selected Topics in Quantum Electronics. 2013. May–June. V. 19. № 3. Article number: 4700423.
  81. Yu N., Capasso F. Flat optics with designer metasurfaces. Nature Materials. 2014. January 23. V. 13. P. 139–150.
  82. Pell R. Light–bending metasurfaces open new opportunities in advanced imaging, display. eeNews Analog. 2017. September 06.
  83. Lin D., Melli M., Poliakov E. et.al. Optical metasurfaces for high angle steering at visible wavelengths. Scientific Reports. 2017. May 23. V. 7. № 1. Article number 2286.
  84. Pell R. Broadband metalens opens new possibilities in virtual, augmented reality. Smart2zero. 2018. January 05.
  85. Single Metalens Focuses all Colors of the Spectrum in one Point. Photonics Spectra. 2018. April. V. 52. № 4.
  86. Chen W.T., Zhu A.Y., Sanjeev V. et. al. A broadband achromatic metalens for focusing and imaging in the visible. Nature Nanotechnology. 2018. January 01. V. 13. P. 220–226.
  87. Key Metamaterial Patent to Fractal Antenna Systems. Business Wire. 2016. October 19.
  88. Wang B. Fractal Antenna claims benefits of metamaterial antennas. Nextbigfuture. 2010. November 22.
  89. Flaherty N. Fractal metamaterial startup demos technology for wireless charging. Smart2zero.com. 2018. January 16.
  90. Fractal Metamaterials. URL: https://www.fractenna.com/our/metamaterials.html
  91. FRACTAL’s Metamaterial–Based Flat Lens to Receive Patent. Business Wire. 2018. March 01.
  92. Metamaterial Antenna Technology Surpasses Yagis, Receives Patent. Business Wire. 2019. June 12.
  93. Chamberlain K. Fractal antenna design offers alternative to the Yagi–Uda. Fierce Wireless. 2019. June 17.
  94. Fractal’s Metamaterial Antenna Technology Offers Superior Alternative to Yagis. Everything RF. 2019. June 13.
  95. Huang X., Xiao S., Ye D. et. al. Fractal plasmonic metamaterials for subwavelength imaging. Optical Express. 2010. V. 18. № 10. P. 10377–10387.
  96. Werner D.H., Ganguly S. An overview of fractal antenna engineering research. IEEE Antennas Propagation Magazine. 2003. V. 45. № 1. P. 38–57.
  97. A marriage of light–manipulation technologies. Solid State Technology. Semiconductor Digest. 2018. March 8.
  98. Wallance J. Harvard and Argonne National Lab cooperate to create MEMS-scanning metalenses. Laser Focus World Magazine. 2018. Feb. 20. 100. Happich J. Researchers aim for MEMS–based reconfigurable metalenses. eeNews Europe. 2018. March 26.
  99. Roy T., Zhang S., Jung I.W. et. al. Dynamic metasurface lens based on MEMS technology. APL Photonics. 2018. V. 3. № 2. Р. 021302.
  100. Wallance J. First broadband optical metalens also focuses arbitrary polarization states. Laser Focus World Magazine. 2018. March 10.
  101. Overton G. Metamaterial solar reflectors remove heat from spacecraft and satellites. Laser Focus World Magazine. 2018. April 28.
  102. Sun K., Riedel C.A., Wang Y., Urbani A. et. al. Metasurface Optical Solar Reflectors Using AZO Transparent Conducting Oxides for  Radiative Cooling of Spacecraft. ACS Photonics. 2017. November 27. V. 5. № 2. [in Russian]
Date of receipt: 10.03.2021
Approved after review: 30.04.2021
Accepted for publication: 25.05.2021