350 руб
Журнал «Успехи современной радиоэлектроники» №12 за 2021 г.
Статья в номере:
Методы линеаризации аналоговых оптических трактов
Тип статьи: обзорная статья
DOI: https://doi.org/10.18127/j20700784-202112-04
УДК: 535.8+621.38
Авторы:

В.А. Небавский1, Р.С. Стариков2, П.А. Черемхин3

1–3 Национальный исследовательский ядерный университет «МИФИ» (Москва, Россия)

Аннотация:

Постановка проблемы. Аналоговые оптические тракты (АОТ) находят широкое применение в современных радиотехнических задачах. Основная функция АОТ – транспорт сверхвысокочастотных аналоговых сигналов. Современные задачи обработки сигналов предъявляют высокие требования к их информативности, где важной проблемой является определение наилучшего компромисса между отношением сигнал/шум и свободным динамическим диапазоном, обеспечиваемым в АОТ. Под линеаризацией АОТ понимаются те или иные действия, обеспечивающие повышение свободного динамического диапазона с целью уменьшения нежелательных искажений сигнала.

Цель. Исследовать методы линеаризации АОТ с внешней модуляцией.

Результаты. Проанализированы современные методы линеаризации сверхвысокочастотных аналоговых оптических трактов.  Выделены основные группы методов: электронные, оптические и гибридные. Рассмотрены основные тенденции и представлены достигнутые результаты по повышению свободного динамического диапазона аналоговых оптических трактов.  Практическая значимость. Рассмотренные методы позволяют существенно повысить информативность сигналов сверхвысокочастотных аналоговых трактов. 

Страницы: 42-62
Для цитирования

Небавский В.А., Стариков Р.С., Черемхин П.А. Методы линеаризации аналоговых оптических трактов // Успехи современной радиоэлектроники. 2021. T. 75. № 12. С. 42–62. DOI: https://doi.org/10.18127/j20700784-202112-04

Список источников
  1. Cox III C.H. Analog Optical Links // Analog Optical Links. 2004.
  2. Urick V.J., Mckinney J.D., Williams K.J. Fundamentals of microwave photonics // Fundamentals of Microwave Photonics. 2015.
  3. Kundert K. Accurate and Rapid Measurement of IP 2 and IP 3. 2002. P. 1–13.
  4. Dingel B., Madamopoulos N., Prescod A. Adaptive High Linearity Intensity Modulator for Advanced Microwave Photonic Links // Opt. Commun. Technol. 2017. April 2018.
  5. Huber D.R., Chang W.S. Increased Linear Dynamic Range by Low Biasing the Mach-Zehnder Modulator // IEEE Photonics Technol. Lett. 1993. V. 5. № 7. P. 779–782.
  6. Karim A., Devenport J. Optimization of linearity figure of merit for microwave photonic links // IEEE Photonics Technol. Lett. 2009. V. 21. № 13. P. 950–952.
  7. Roussell H.V. et al. Gain, noise figure and bandwidth-limited dynamic range of a low-biased external modulation link // MWP 2007 – 2007 IEEE Int. Top. Meet. Microw. Photonics. 2007. P. 84–87.
  8. Singh S., Arya S.K., Singla S. A Study Review of Various Optical Linearization Techniques for Next Generation RoF Networks // Proc. IEEE Int. Conf. Signal Process. Control. 2019. V. 2019. October. P. 125–133.
  9. Betts G.E. Optical Analog Links. 1994. P. 3–6.
  10. Betts G.E., Donnell F.J.O. Suboctave Linearized : Modulators // Technology. 1996. V. 8. № 9. P. 8–10.
  11. Sabido D.J.M. et al. Improving the Dynamic Range of a Coherent AM Analog Optical Link Using a Cascaded Linearized Modulator // IEEE Photonics Technol. Lett. 1995. V. 7. № 7. P. 813–815.
  12. Burns W.K. Linearized Optical Modulator with Fifth Order Correction // J. Light. Technol. 1995. V. 13. № 8. P. 1724–1727.
  13. Karim A., Devenport J. High dynamic range microwave photonic links for RF signal transport and RF-IF conversion // J. Light. Technol. 2008. V. 26. № 15. P. 2718–2724.
  14. Urick V.J. et al. Analog fiber-optic links employing cascaded phase modulation stages // Microw. Opt. Technol. Lett. 2012.
  15. Dai Y. et al. Feedforward linearization for RF photonic link with broadband adjustment-free operation // Opt. Express. 2017. V. 25. № 17. P. 20770.
  16. Korotky S.K., De Ridder R.M. Dual Parallel Modulation Schemes for Low-Distortion Analog Optical Transmission // IEEE J. Sel. Areas Commun. 1990. V. 8. № 7. P. 1377–1381.
  17. Urick V.J. et al. Phase modulation with interferometric detection as an alternative to intensity modulation with direct detection for analog-photonic links // IEEE Trans. Microw. Theory Tech. 2007. V. 55. № 9. P. 1978–1984.
  18. McKinney J.D., Colladay K., Williams K.J. Linearization of phase-modulated analog optical links employing interferometric demodulation // J. Light. Technol. 2009. V. 27. № 9. P. 1212–1220.
  19. Lim C. et al. Intermodulation distortion improvement for fiber-radio applications incorporating OSSB+C modulation in an optical integrated-access environment // J. Light. Technol. 2007. V. 25. № 6. P. 1602–1612.
  20. Zhu G., Liu W., Fetterman H.R. A broadband linearized coherent analog fiber-optic link employing dual parallel Mach-Zehnder modulators // IEEE Photonics Technol. Lett. 2009. V. 21. № 21. P. 1627–1629.
  21. Li S. et al. Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach-Zehnder modulator // IEEE Photonics Technol. Lett. 2010. V. 22. № 24. P. 1775–1777.
  22. Li J. et al. Third-order intermodulation distortion elimination of microwave photonics link based on integrated dual-drive dualparallel Mach–Zehnder modulator // Opt. Lett. 2013. V. 38. № 21. P. 4285.
  23. Chan E.H.W. Microwave photonic mixer based on a single bidirectional Mach–Zehnder modulator // Appl. Opt. 2014. V. 53. № 7. P. 1306.
  24. Liang D. et al. Influence of Power Distribution on Performance of Intermodulation Distortion Suppression // IEEE Photonics Technol. Lett. 2015. V. 27. № 15. P. 1639–1641.
  25. Singh S., Arya S.K., Singla S. Linearization of Photonic Link Based on Phase-Controlled Dual Drive Dual-Parallel Mach–Zehnder Modulator // Wirel. Pers. Commun. Springer, 2020. V. 114. № 1. P. 85–92.
  26. Shaqiri S., Haxha S., Mirza T.N. Elimination of odd and even intermodulation distortions of analog microwave photonics link based on GaAs MZMs // Opt. Express. 2020. V. 28. № 12. P. 17521.
  27. Shaqiri S., Haxha S. Linearization and down-conversion of microwave photonics Signal based on dual-drive dual-parallel machzehnder modulator with eliminated 3rd intermodulation and 2nd distortions // Optik (Stuttg). Elsevier, 2020. V. 204. December 2019. P. 164103.
  28. Mirza T.N., Haxha S., Dayoub I. A Linearized Analog Microwave Photonic Link With an Eliminated Even-Order Distortions // IEEE Syst. J. Institute of Electrical and Electronics Engineers Inc., 2021.
  29. Ackerman E.I. Broadband linearization of a Mach-Zehnder electro-optic modulator // IEEE MTT-S Int. Microw. Symp. Dig. 1999. V. 3. № 12. P. 999–1002.
  30. Ackerman E.I., Betts G.E., Cox C.H. Inherently broadband linearized modulator for high-SFDR, low-NF microwave photonic links // 2016 IEEE Int. Top. Meet. Microw. Photonics, MWP 2016. 2016. V. 3. P. 265–268.
  31. Ackerman E.I., Cox C.H. Improved RF Interference Suppression Method // J. Light. Technol. 2020. V. 38. № 19. P. 5546–5550.
  32. Zhang W. et al. Dual-wavelength linearization of analog photonic link based on PM–IM conversion // Opt. Commun. Elsevier Ltd., 2018. V. 420. № March. P. 174–178.
  33. Johnson L.M., Roussel H.V. Reduction of intermodulation distortion in interferometric optical modulators. 1988. V. 13. № 10. 119–121.
  34. Haas B.M., Murphy T.E. A simple, linearized, phase-modulated analog optical transmission system // IEEE Photonics Technol. Lett. 2007. V. 19. № 10. P. 729–731.
  35. Masella B., Zhang X. Linearized optical single sideband Mach-Zehnder electro-optic modulator for radio over fiber systems // Opt. Express. 2008. V. 16. № 12. P. 9181.
  36. Huang M., Fu J., Pan S. Linearized analog photonic links based on a dual-parallel polarization modulator // Opt. Lett. 2012. V. 37. № 11. P. 1823.
  37. Han X., Chen X., Yao J. Simultaneous even- and third-order distortion suppression in a microwave photonic link based on orthogonal polarization modulation, balanced detection, and optical sideband filtering // Opt. Express. 2016. V. 24. № 13. P. 14812.
  38. Zhang H. et al. Polarization-modulated analog photonic link with compensation of the dispersion-induced power fading // Opt. Lett. 2012. V. 37. № 5. P. 866.
  39. Zhao F. et al. Linearized microwave photonic link based on dual-driven Mach–Zehnder modulator // Opt. Eng. 2020. V. 59. № 1.1.
  40. Singh S., Arya S.K., Singla S. Linearization of Photonic Link Based on Phase-Controlled Dual Drive Dual-Parallel Mach–Zehnder Modulator // Wirel. Pers. Commun. Springer US, 2020. V. 114. № 1. P. 85–92.
  41. Wang Y. et al. Microwave photonic link with flexible even-order and third-order distortion suppression // IEEE J. Quantum Electron. IEEE, 2019. V. 55. № 3. P. 1–9.
  42. Filter M. Wavelength Conversion Using a Light Injected : 1995. V. I. № 9. P. 998–1000.
  43. Bogaerts W. et al. Silicon microring resonators // Laser Photonics Rev. 2012. V. 6. № 1. P. 47–73.
  44. Haffner C. et al. Low-loss plasmon-assisted electro-optic modulator. 2018.
  45. Dingel B., Madamopoulos N., Prescod A. Adaptive High Linearity Intensity Modulator for Advanced Microwave Photonic Links // Opt. Commun. Technol. 2017.
  46. Prescod A., Dingel B.B., Madamopoulos N. Super-linear modulator with extended bandwidth capability for broadband access applications // Broadband Access Commun. Technol. III. 2009. V. 7234. May 2014. P. 72340E.
  47. Dingel B. et al. Analytical model, analysis and parameter optimization of a super linear electro-optic modulator (SFDR > 130 dB) // Opt. Commun. Elsevier B.V., 2011. V. 284. № 24. P. 5578–5587.
  48. Dingel B.B. et al. Power balancing effect on the performance of IMPACC modulator under critical coupling (CC), over coupling (OC), and under coupling (UC) conditions at high frequency // Broadband Access Commun. Technol. VI. 2012. V. 8282. № Cc. P. 828208.
  49. Prescod A. et al. Effect of ring resonator waveguide loss on SFDR performance of highly linear optical modulators under suboctave operation // IEEE Photonics Technol. Lett. 2010. V. 22. № 17. P. 1297–1299.
  50. Childs R.B., O’Byrne V.A. Multichannel AM Video Transmission Using a High-Power Nd: YAG Laser and Linearized External Modulator // IEEE J. Sel. Areas Commun. 1990. V. 8. № 7. P. 1369–1376.
  51. Agarwal A. et al. Predistortion compensation of nonlinearities in channelized RF photonic links using a dual-port optical modulator // IEEE Photonics Technol. Lett. 2011. V. 23. № 1. P. 24–26.
  52. Shen Y. et al. A novel analog broadband rf predistortion circuit to linearize electro-absorption modulators in multiband ofdm radioover-fiber systems // IEEE Trans. Microw. Theory Tech. 2010. V. 58. № 11 PART 2. P. 3327–3335.
  53. Zhu R. et al. Broadband predistortion circuit using zero bias diodes for radio over fiber systems // IEEE Photonics Technol. Lett. 2013. V. 25. № 21. P. 2101–2104. 58
  54. Hosseinzadeh N. et al. A Distributed Low-Noise Amplifier for Broadband Linearization of a Silicon Photonic Mach-Zehnder Modulator // IEEE J. Solid-State Circuits. Institute of Electrical and Electronics Engineers Inc., 2021. V. 56. № 6. P. 1897–1909.
  55. Xu B. et al. Spurious-free dynamic range improvement in a photonic time-stretched analog-to-digital converter based on third-order predistortion // Photonics Res. 2014. V. 2. № 5. P. 97.
  56. Nazarathy M. et al. Progress in externally modulated AM CATV transmission systems // J. Light. Technol. 1993. V. 11. № 1. P. 82–105.
  57. Chiu Y. et al. Broad-band electronic linearizer for externally modulated analog fiber-optic links // IEEE Photonics Technol. Lett. 1999. V. 11. № 1. P. 48–50.
  58. Sadhwani R., Jalali B. Adaptive CMOS predistortion linearizer for fiber-optic links // J. Light. Technol. 2003. V. 21. № 12. P. 3180–3193.
  59. Chou H.F. et al. SFDR improvement of a coherent receiver using feedback // Opt. InfoBase Conf. Pap. 2006. P. 4–6.
  60. Bhatia A., Ting H.-F., Foster M.A. Linearization of phase-modulated analog optical links using a four-wave mixing comb source // Opt. Express. 2014. V. 22. № 25. P. 30899.
  61. Ismail T. et al. High-dynamic-range wireless-over-fiber link using feedforward linearization // J. Light. Technol. 2007. V. 25. № 11.3274–3282.
  62. Li P. et al. Fast Self-adaptive Generic Digital Linearization for Analog Microwave Photonic Systems // J. Light. Technol. Institute of Electrical and Electronics Engineers Inc., 2021.
  63. Lam D., Fard A.M., Jalali B. Digital broadband linearization of analog optical links // 2012 IEEE Photonics Conf. IPC 2012. 2012. V. 38. № 4. P. 370–371.
  64. Liu E. et al. Nonlinear Distortions Compensation Based on Artificial Neural Networks in Wideband and Multi-Carrier Systems // IEEE J. Quantum Electron. IEEE, 2019. V. 55. № 5. P. 1–5.
  65. Bai W. et al. Multi-octave linearized off-quadrature biased MZM analog optical link using blind digital linearization // 2020 Asia Commun. Photonics Conf. ACP 2020 Int. Conf. Inf. Photonics Opt. Commun. IPOC 2020 - Proc. 2020. V. 1. № 1. P. 4–6.
  66. Jiang T. et al. Broadband Spurious-Free Dynamic Range Expander for Microwave Photonic Links Based on Optical Distortion Control // IEEE Photonics J. IEEE, 2019. V. 11. № 1. P. 1–8.
Дата поступления: 25.09.2021
Одобрена после рецензирования: 12.10.2021
Принята к публикации: 15.11.2021