350 rub
Journal Achievements of Modern Radioelectronics №12 for 2021 г.
Article in number:
Linearization methods for analog optical paths
Type of article: overview article
DOI: https://doi.org/10.18127/j20700784-202112-04
UDC: 535.8+621.38
Authors:

V.A. Nebavskiy1, R.S. Starikov2, P.A. Cheremkhin3

1–3  National Research Nuclear University «MEPhI» (Moscow, Russia)

Abstract:

Linearity of transfer function is one of the most important high-frequency analog optical links characteristic. Both increasing the dynamic range and the signal energy budget are key tasks in microwave photonics. In result the classification of links linearization schemes is of great interest.

In this paper state of the art linearization schemes for microwave photonic links are analyzed and classified.

The main groups of methods of analog optical links linearization are chosen. They can be divided into electronic, optical, and hybrid techniques. The most important trends of linear system construction are considered. Obtained results of increasing the free dynamic range of analog optical links are presented.

Pages: 42-62
For citation

Nebavskiy V.A., Starikov R.S., Cheremkhin P.A. Linearization methods for analog optical paths. Achievements of modern radioelectronics. 2021. V. 75. № 12. P. 42–62. DOI: https://doi.org/10.18127/j20700784-202112-04 [in Russian]

References
  1. Cox III C.H. Analog Optical Links. Analog Optical Links. 2004.
  2. Urick V.J., Mckinney J.D., Williams K.J. Fundamentals of microwave photonics. Fundamentals of Microwave Photonics. 2015.
  3. Kundert K. Accurate and Rapid Measurement of IP 2 and IP 3. 2002. P. 1–13.
  4. Dingel B., Madamopoulos N., Prescod A. Adaptive High Linearity Intensity Modulator for Advanced Microwave Photonic Links. Opt. Commun. Technol. 2017. April 2018.
  5. Huber D.R., Chang W.S. Increased Linear Dynamic Range by Low Biasing the Mach-Zehnder Modulator. IEEE Photonics Technol. Lett. 1993. V. 5. № 7. P. 779–782.
  6. Karim A., Devenport J. Optimization of linearity figure of merit for microwave photonic links. IEEE Photonics Technol. Lett. 2009. V. 21. № 13. P. 950–952.
  7. Roussell H.V. et al. Gain, noise figure and bandwidth-limited dynamic range of a low-biased external modulation link. MWP 2007 – 2007 IEEE Int. Top. Meet. Microw. Photonics. 2007. P. 84–87.
  8. Singh S., Arya S.K., Singla S. A Study Review of Various Optical Linearization Techniques for Next Generation RoF Networks. Proc. IEEE Int. Conf. Signal Process. Control. 2019. V. 2019. October. P. 125–133.
  9. Betts G.E. Optical Analog Links. 1994. P. 3–6.
  10. Betts G.E., Donnell F.J.O. Suboctave Linearized : Modulators. Technology. 1996. V. 8. № 9. P. 8–10.
  11. Sabido D.J.M. et al. Improving the Dynamic Range of a Coherent AM Analog Optical Link Using a Cascaded Linearized Modulator. IEEE Photonics Technol. Lett. 1995. V. 7. № 7. P. 813–815.
  12. Burns W.K. Linearized Optical Modulator with Fifth Order Correction. J. Light. Technol. 1995. V. 13. № 8. P. 1724–1727.
  13. Karim A., Devenport J. High dynamic range microwave photonic links for RF signal transport and RF-IF conversion. J. Light. Technol. 2008. V. 26. № 15. P. 2718–2724.
  14. Urick V.J. et al. Analog fiber-optic links employing cascaded phase modulation stages. Microw. Opt. Technol. Lett. 2012.
  15. Dai Y. et al. Feedforward linearization for RF photonic link with broadband adjustment-free operation. Opt. Express. 2017. V. 25. № 17. P. 20770.
  16. Korotky S.K., De Ridder R.M. Dual Parallel Modulation Schemes for Low-Distortion Analog Optical Transmission. IEEE J. Sel. Areas Commun. 1990. V. 8. № 7. P. 1377–1381.
  17. Urick V.J. et al. Phase modulation with interferometric detection as an alternative to intensity modulation with direct detection for analog-photonic links. IEEE Trans. Microw. Theory Tech. 2007. V. 55. № 9. P. 1978–1984.
  18. McKinney J.D., Colladay K., Williams K.J. Linearization of phase-modulated analog optical links employing interferometric demodulation. J. Light. Technol. 2009. V. 27. № 9. P. 1212–1220.
  19. Lim C. et al. Intermodulation distortion improvement for fiber-radio applications incorporating OSSB+C modulation in an optical integrated-access environment. J. Light. Technol. 2007. V. 25. № 6. P. 1602–1612.
  20. Zhu G., Liu W., Fetterman H.R. A broadband linearized coherent analog fiber-optic link employing dual parallel Mach-Zehnder modulators. IEEE Photonics Technol. Lett. 2009. V. 21. № 21. P. 1627–1629.
  21. Li S. et al. Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach-Zehnder modulator. IEEE Photonics Technol. Lett. 2010. V. 22. № 24. P. 1775–1777.
  22. Li J. et al. Third-order intermodulation distortion elimination of microwave photonics link based on integrated dual-drive dual-parallel Mach–Zehnder modulator. Opt. Lett. 2013. V. 38. № 21. P. 4285.
  23. Chan E.H.W. Microwave photonic mixer based on a single bidirectional Mach–Zehnder modulator. Appl. Opt. 2014. V. 53. № 7. P. 1306.
  24. Liang D. et al. Influence of Power Distribution on Performance of Intermodulation Distortion Suppression. IEEE Photonics Technol. Lett. 2015. V. 27. № 15. P. 1639–1641.
  25. Singh S., Arya S.K., Singla S. Linearization of Photonic Link Based on Phase-Controlled Dual Drive Dual-Parallel Mach–Zehnder Modulator. Wirel. Pers. Commun. Springer, 2020. V. 114. № 1. P. 85–92.
  26. Shaqiri S., Haxha S., Mirza T.N. Elimination of odd and even intermodulation distortions of analog microwave photonics link based on GaAs MZMs. Opt. Express. 2020. V. 28. № 12. P. 17521.
  27. Shaqiri S., Haxha S. Linearization and down-conversion of microwave photonics Signal based on dual-drive dual-parallel mach-zehnder modulator with eliminated 3rd intermodulation and 2nd distortions. Optik (Stuttg). Elsevier, 2020. V. 204. December 2019. P. 164103.
  28. Mirza T.N., Haxha S., Dayoub I. A Linearized Analog Microwave Photonic Link With an Eliminated Even-Order Distortions. IEEE Syst. J. Institute of Electrical and Electronics Engineers Inc., 2021.
  29. Ackerman E.I. Broadband linearization of a Mach-Zehnder electro-optic modulator. IEEE MTT-S Int. Microw. Symp. Dig. 1999. V. 3. № 12. P. 999–1002.
  30. Ackerman E.I., Betts G.E., Cox C.H. Inherently broadband linearized modulator for high-SFDR, low-NF microwave photonic links. 2016 IEEE Int. Top. Meet. Microw. Photonics, MWP 2016. 2016. V. 3. P. 265–268.
  31. Ackerman E.I., Cox C.H. Improved RF Interference Suppression Method. J. Light. Technol. 2020. V. 38. № 19. P. 5546–5550.
  32. Zhang W. et al. Dual-wavelength linearization of analog photonic link based on PM–IM conversion. Opt. Commun. Elsevier Ltd., 2018. V. 420. № March. P. 174–178.
  33. Johnson L.M., Roussel H.V. Reduction of intermodulation distortion in interferometric optical modulators. 1988. V. 13. № 10. P. 119–121.
  34. Haas B.M., Murphy T.E. A simple, linearized, phase-modulated analog optical transmission system. IEEE Photonics Technol. Lett. 2007. V. 19. № 10. P. 729–731.
  35. Masella B., Zhang X. Linearized optical single sideband Mach-Zehnder electro-optic modulator for radio over fiber systems. Opt.  Express. 2008. V. 16. № 12. P. 9181.
  36. Huang M., Fu J., Pan S. Linearized analog photonic links based on a dual-parallel polarization modulator. Opt. Lett. 2012. V. 37. № 11. P. 1823.
  37. Han X., Chen X., Yao J. Simultaneous even- and third-order distortion suppression in a microwave photonic link based on orthogonal polarization modulation, balanced detection, and optical sideband filtering. Opt. Express. 2016. V. 24. № 13. P. 14812.
  38. Zhang H. et al. Polarization-modulated analog photonic link with compensation of the dispersion-induced power fading. Opt. Lett. 2012. V. 37. № 5. P. 866.
  39. Zhao F. et al. Linearized microwave photonic link based on dual-driven Mach–Zehnder modulator. Opt. Eng. 2020. V. 59. № 1. P. 1.
  40. Singh S., Arya S.K., Singla S. Linearization of Photonic Link Based on Phase-Controlled Dual Drive Dual-Parallel Mach–Zehnder Modulator. Wirel. Pers. Commun. Springer US, 2020. V. 114. № 1. P. 85–92.
  41. Wang Y. et al. Microwave photonic link with flexible even-order and third-order distortion suppression. IEEE J. Quantum Electron. IEEE, 2019. V. 55. № 3. P. 1–9.
  42. Filter M. Wavelength Conversion Using a Light Injected : 1995. V. I. № 9. P. 998–1000.
  43. Bogaerts W. et al. Silicon microring resonators. Laser Photonics Rev. 2012. V. 6. № 1. P. 47–73.
  44. Haffner C. et al. Low-loss plasmon-assisted electro-optic modulator. 2018.
  45. Dingel B., Madamopoulos N., Prescod A. Adaptive High Linearity Intensity Modulator for Advanced Microwave Photonic Links. Opt. Commun. Technol. 2017.
  46. Prescod A., Dingel B.B., Madamopoulos N. Super-linear modulator with extended bandwidth capability for broadband access applications. Broadband Access Commun. Technol. III. 2009. V. 7234. May 2014. P. 72340E.
  47. Dingel B. et al. Analytical model, analysis and parameter optimization of a super linear electro-optic modulator (SFDR > 130 dB). Opt. Commun. Elsevier B.V., 2011. V. 284. № 24. P. 5578–5587.
  48. Dingel B.B. et al. Power balancing effect on the performance of IMPACC modulator under critical coupling (CC), over coupling (OC), and under coupling (UC) conditions at high frequency. Broadband Access Commun. Technol. VI. 2012. V. 8282. № Cc. P. 828208.
  49. Prescod A. et al. Effect of ring resonator waveguide loss on SFDR performance of highly linear optical modulators under suboctave operation. IEEE Photonics Technol. Lett. 2010. V. 22. № 17. P. 1297–1299.
  50. Childs R.B., O’Byrne V.A. Multichannel AM Video Transmission Using a High-Power Nd: YAG Laser and Linearized External Modulator. IEEE J. Sel. Areas Commun. 1990. V. 8. № 7. P. 1369–1376.
  51. Agarwal A. et al. Predistortion compensation of nonlinearities in channelized RF photonic links using a dual-port optical modulator. IEEE Photonics Technol. Lett. 2011. V. 23. № 1. P. 24–26.
  52. Shen Y. et al. A novel analog broadband rf predistortion circuit to linearize electro-absorption modulators in multiband ofdm radioover-fiber systems. IEEE Trans. Microw. Theory Tech. 2010. V. 58. № 11 PART 2. P. 3327–3335.
  53. Zhu R. et al. Broadband predistortion circuit using zero bias diodes for radio over fiber systems. IEEE Photonics Technol. Lett. 2013. V. 25. № 21. P. 2101–2104.
  54. Hosseinzadeh N. et al. A Distributed Low-Noise Amplifier for Broadband Linearization of a Silicon Photonic Mach-Zehnder Modulator. IEEE J. Solid-State Circuits. Institute of Electrical and Electronics Engineers Inc., 2021. V. 56. № 6. P. 1897–1909.
  55. Xu B. et al. Spurious-free dynamic range improvement in a photonic time-stretched analog-to-digital converter based on third-order predistortion. Photonics Res. 2014. V. 2. № 5. P. 97.
  56. Nazarathy M. et al. Progress in externally modulated AM CATV transmission systems. J. Light. Technol. 1993. V. 11. № 1. P. 82–105.
  57. Chiu Y. et al. Broad-band electronic linearizer for externally modulated analog fiber-optic links. IEEE Photonics Technol. Lett. 1999. V. 11. № 1. P. 48–50.
  58. Sadhwani R., Jalali B. Adaptive CMOS predistortion linearizer for fiber-optic links. J. Light. Technol. 2003. V. 21. № 12. P. 3180–3193.
  59. Chou H.F. et al. SFDR improvement of a coherent receiver using feedback. Opt. InfoBase Conf. Pap. 2006. P. 4–6.
  60. Bhatia A., Ting H.-F., Foster M.A. Linearization of phase-modulated analog optical links using a four-wave mixing comb source. Opt. Express. 2014. V. 22. № 25. P. 30899.
  61. Ismail T. et al. High-dynamic-range wireless-over-fiber link using feedforward linearization. J. Light. Technol. 2007. V. 25. № 11. P. 3274–3282.
  62. Li P. et al. Fast Self-adaptive Generic Digital Linearization for Analog Microwave Photonic Systems. J. Light. Technol. Institute of Electrical and Electronics Engineers Inc., 2021.        
  63. Lam D., Fard A.M., Jalali B. Digital broadband linearization of analog optical links. 2012 IEEE Photonics Conf. IPC 2012. 2012. V. 38. № 4. P. 370–371.
  64. Liu E. et al. Nonlinear Distortions Compensation Based on Artificial Neural Networks in Wideband and Multi-Carrier Systems. IEEE J. Quantum Electron. IEEE, 2019. V. 55. № 5. P. 1–5.
  65. Bai W. et al. Multi-octave linearized off-quadrature biased MZM analog optical link using blind digital linearization. 2020 Asia Commun. Photonics Conf. ACP 2020 Int. Conf. Inf. Photonics Opt. Commun. IPOC 2020 - Proc. 2020. V. 1. № 1. P. 4–6.
  66. Jiang T. et al. Broadband Spurious-Free Dynamic Range Expander for Microwave Photonic Links Based on Optical Distortion Control. IEEE Photonics J. IEEE, 2019. V. 11. № 1. P. 1–8. 
Date of receipt: 25.09.2021
Approved after review: 12.10.2021
Accepted for publication: 15.11.2021