350 руб
Журнал «Успехи современной радиоэлектроники» №2 за 2020 г.
Статья в номере:
Магнитные технологии хранения информации
Тип статьи: научная статья
DOI: 10.18127/j20700784-202002-03
УДК: 539.216.2
Авторы:

В.Г. Шадров – к.ф.-м.н., вед. науч. сотрудник, 

ГНПО «НПЦ НАН Беларуси по материаловедению»

А.Э. Дмитриева – мл. науч. сотрудник, 

ГНПО «НПЦ НАН Беларуси по материаловедению»

А.В. Болтушкин – к.ф.-м.н., вед. науч. сотрудник, 

ГНПО «НПЦ НАН Беларуси по материаловедению»

E-mail: nemtsevich@ifttp.bas-net.by

Аннотация:

Постановка проблемы. Лавинообразный рост информационных потоков, а также требование повышения производительности вычислительных систем создает запрос на надежные сверхбыстрые накопители информации.

Цель. Проанализировать основные тенденции развития материалов и параметров устройств хранения информации на основе магнитных технологий.

Результаты. Проведен анализ основных параметров и материалов устройств хранения информации на основе магнитных технологий: жестких магнитных дисков и магнитных лент, магниторезистивной оперативной памяти, включая трековую память и память на скирмионах, а также возможность антиферромагнитной технологии хранения информации.

Практическая значимость. Магниторезистивная память с переключением ячейки памяти с помощью передачи спинового момента потенциально способна стать универсальной памятью и изменить архитектуру компьютеров.

Страницы: 30-44
Список источников
  1.  
  2. Bhatti S., Sbiaa R., Hirihata A., Ohno H., Fukami S., Piramanayagam S.N. Spintronics based random access memory: a review // Mater. Today. 2017. V. 20. P. 530–548.
  3. Stamps R., Breitkreuts S., Akerman J., Chumak A. et al. The 2014 magnetism roadmap // J. Phys. D.: Appl. Phys. 2014. V. 47. 333001-1-28.
  4. Chaudhary R., Kansal A. A perspective on the future of the magnetic hard disk drive technology // Int. J. Tech. Res. Appl. 2015. V. 3. P. 63–74.
  5. Wang F., Xu X.-H. Writability issues in high-anisotropy perpendicular magnetic recording media // Chin. Phys. B. 2014. V. 23. 036802-1-12.
  6. Шадров В.Г., Дмитриева А.Э., Болтушкин А.В. Суперпарамагнитный предел и термостабильность сред магнитной записи // Успехи современной радиоэлектроники. 2015. № 12. С. 67–76.
  7. Scheunert G., Heinonen O., Hardeman R., Lapicki A., Gubbins M., Bowman R.M. A review of high magnetic moment thin films for microscale and nanotechnology applications // Appl. Phys. Rev. 2016. V. 3. P. 011301-1-44.
  8. Weller D., Parker G., Mosendz O., Champion E., Stipe B., Wang X., Klemmer T., Ju G., Ajan A. A HAMR media technology roadmap to an areal density of 4 Tb/in2 // IEEE Trans. Magn. 2014. V. 50. P. 3100108-1-8.
  9. Okamoto S., Kikuchi N., Furuta M., Kitakami O., Shimatsu T. Microwave assisted magnetic recording technologies and related physics // J. Phys. D: Appl. Phys. 2015. V. 48. P. 353001-1-7.
  10. Wood R., Williams M., Kavcic A., Miles J. The feasibility of magnetic recording at 10 Tb/inch2 on conventional media // IEEE Trans. Magn. 2009. V. 445. P. 917–923.
  11. Albrecht T.R., Bedau D., Dobisz E. et al. Bit patterned media at 1 Tdot/in2 and beyond // IEEE Trans. Magn. 2013. V. 49. P. 773–778.
  12. Wang S., Wang Y., Victora R.H. Shingled magnetic recording on bit patterned media at 10 Tb/in2 // IEEE Trans. Magn. 2013. V. 49. P. 3644–3647.
  13. Hirohata A., Takahashi K. Future perspectives for spintronic devices // J. Phys. D.: Appl. Phys. 2014. V. 47. P. 193001-1-40.
  14. Suess D., Vogler C., Abert C., Bruckner F., Windl R., Breth L. Fundamental limits in heat-assisted magnetic recording and methods to overcome it with exchange spring structures // J. Appl. Phys. 2015. V. 117. P. 163913-1-4.
  15. Gavrila H. Achievements and expected issues in heat assisted magnetic recording // J. Engineer. Sci. Innovation 2017. V. 2. P. 16–26.
  16. Silva T.J., Shaw J.M., Nembach H.T. et al. Head and media challenges for 3 Tb/in2 microwave assisted magnetic reсоrding // IEEE Trans. Magn. 2014. V. 50. P. 1–9.
  17. Zhou N., Traverso L.M., Xu X. Power delivery and self-heating in nanoscale near-field transducer for heat-assisted magnetic recording // Nanotechnology. 2015. V. 26. P. 134001-1-7.
  18. Abadia N., Bello F., Zhong C. et al. Optical and thermal analysis of the light-heat conversion process employing an antenna-based hybrid plasmonic waveguide for HAMR // Optics Express. 2018. V. 26. P. 1752-1-14.
  19. Datta A., Xu X. Comparative study of optical near-field transducers for heat-assisted magnetic recording // Opt. Eng. 2017. V. 56. 121906-1-5.
  20. Xiong S., Kim J., Wang Y., Zhang X., Bogy D. A two-stage heating scheme for heat assisted magnetic recording // J. Appl. Phys. 2014. V. 115. P. 17B702-1–3.
  21. Xu B.X., Ji R., Toh Y.T., Hu J.F., Li J.M., Zhang J. Performance benefits from pulsed laser heating in heat assisted magnetic recording // J. Appl. Phys. 2014. V. 115. P. 17B701-1-4.
  22. Scheunert G., Cohen S.R., Kullock R. et al. Grazing-incidence optical magnetic ording with super-resolution // Beilstein J. Nanotechnol. 2017. V. 8. P. 28–37.
  23. Chen Y.J., Yang H.Z., Leong S.H., Santoso B., Shi J.Z., Xu B.X., Tsai J.W. Heat-assisted recording on bottom layer of dual recording layer perpendicular magnetic recording media for two and half dimensional (2.5 D) magnetic data storage // J. Appl. Phys. 2015. V. 117. P. 17C106-1-4.
  24. Rivkin K., Benakli M., Tabat N., Yin H. Physical principles of microwave assisted magnetic recording // J. Appl. Phys. 2014. V. 115. 214312 -1-12.
  25. Greaves S.J., Kanai Y., Muraoka H. Microwave-assisted magnetic recording on dual-thickness and dual-layer bit patterned media // IEEE Trans. Magn. 2016. V. 51. P. 253756-1-6.
  26. Chen T., Dumas R. K., Eklund A. et al. Spin-torque and spin- Hall nano-oscillators // Proc. IEEE. 2016. V. 104. P. 1919-1-24.
  27. Zhang M., Zhou T., Yuan Z. Analysis of switchable spin-torque oscillator for microwave assisted magnetic recording // Adv. Cond. Matter. Phys. 2015. P. 457456-1-6.
  28. Sani S., Persson J., Mohseni S. et al. Mutually synchronized bottom-up multi-nanocontact spintorque oscillators // Nat. Commun. 2013. V. 4. P. 2731-2734.
  29. Vogler C., Abert C., Bruckner F., Suess D., Praetorius D. Heat-assisted magnetic recording of bit-patterned media beyond 10 Tb/in2 // Appl.Phys. Lett. 2016. V. 108. P. 102406-1-6.
  30. Muthsam O., Vogler C., Suess D. Noise reduction in heat-assisted magnetic recording of bit-patterned media by optimizing a high/low Tc bilayer structure // J. Appl. Phys. 2017. V. 122. P. 213903-1-7.
  31. Amos N., Butler J., Lee B. et al. Multilevel-3D bit patterned media with 8 signal levels per nanocolumn // PlosOne. 2012. V. 7. P. e40134-1-7.
  32. Bhattacharyya S. Iron nitride family at reduced dimensions: A review of their synthesis protocols and structural and magnetic properties // J. Phys. Chem. C 2015. V. 119. P. 1601–1622.
  33. Ward C., Scheunert G., Hendren W.R., Bowman R.M. Realizing the high moment in Fe/Cr/Gd: The role of the rare earth // Appl. Phys. Lett. 2013. V. 102. P. 092403-1-4.
  34. Шадров В.Г., Дмитриева А.Э., Болтушкин А.В. Магнитные головки чтения-записи: материалы, технологии, перспективы // Успехи современной радиоэлектроники. 2018. № 4. С. 3–13.
  35. Kautzky M.C., Blaber M.G. Materials for heat-assisted magnetic recording heads / MRS Bull. 2018. V. 43. P. 100–105.
  36. Trassin M. Low energy consumption spintronics using multiferroic heterostructures // J. Phys. Cond. Matter 2016 V. 28. P. 033001-1-5.
  37. John R., Berrita M., Hinzke D. et al. Magnetization switching of FePt nanoparticle recording medium by femtosecond laser pulses // Sci. Rep. 2017. V. 7. P. 4114–4117.
  38. Hirohata A., Sukegawa H., Yanagihara H., Zutic I., Seki T., Mizukami S., Swaminathan R. Roadmap for emerging materials for spintronic device applications // IEEE Trans. Magn. 2015. V. 51. P. 1–11.
  39. Hirohata A., Sagar J., Lari L., Fleet L.R., Lazarov V.K. Heusler-alloy films for spintronic devices // Appl. Phys. A. 2013. V. 111. 423–430.
  40. Компания IBM вновь установила рекорд по плотности записи на магнитную ленту. Высокотехнологичные и продвинутые новости на Hi-News.ru. 12.09.2017. URL: https://hi-news.ru/technology/kompaniya-ibm-vnov-ustanovila-rekord-po-plotnostizapisi-na-magnitnuyu-lentu.html
  41. Sbia R., Meng H., Piramanayagam S.N. Materials with perpendicular magnetic anisotropy for magnetic random access memory // Phys. Stat. Sol. RRL 2011.V. 5. P. 413–419.
  42. Chen E., Apalkov D., Diao Z., Driskill-Smith A., Druist D., Lottis D. Advances and future prospects of spin-transfer torque random access memory // IEEE Trans. Magn. 2010. V. 46. P. 1873–1878.
  43. Wang K.L., Khalili Amiri P. Nonvolatile spintronics: perspectives on instant-on nonvolatile nanoelectronic systems // SPIN. 2012. V. 2. P. 1250009-1-6.
  44. Paul S., Saibal M., Swarup B. A circuit and architecture codesign approach for a hybrid CMO&-STTRAM nonvolatile FPGA // IEEE Trans. Nanotechnol. 2011. V. 10. P. 385–394.
  45. Wu T., Bur A., Wong K. et al. Electrical control of reversible and permanent magnetization reorientation for magnetoelectric memory devices // Appl. Phys. Lett. 2011. V. 98. P. 262504-1-7.
  46. Khalili Amiri P., Wang K. L. Voltage-controlled magnetic anisotropy in spintronic devices // SPIN 2012. V. 2. P. 1240002-1-5.
  47. Cai H., Kang W. Naviner L.A., Yang J., Zhao W. High performance MRAM with spin-transfer torque and voltage-controlled magnetic anisotropy effects // Appl. Sci. 2017. V. 7. P. 929-1-13.
  48. Liu L., Pai C.-F., Li Y., Tseng H.W., Ralph D.C., Buhrman R.A. Spin-torque switching with the giant spin Нall effect of tantalum // Science. 2012. V. 336. P. 555–558.
  49. Wang K.L., Ovchinnikov I., Xiu F., Khitun A., Bao M. From nanoelectronics to nano-spintronics // J. Nanosci. Nanotechnol. 2011. V. 11. P. 306–313.
  50. Liu H., Bedau D., Backes D., Katine J.A., Langer J., Kent A.D. Ultrafast switching in magnetic tunnel junction based orthogonal spin transfer devices // Appl. Phys.Lett. 2010. V. 97. P. 242510-1-5.
  51. Bedau D., Liu H., Sun J.Z., Katine J.A., Fullerton E.E., Mangin S., Kent A.D. Spin-transfer pulse switching: from the dynamic to the thermally activated regime // Appl. Phys. Lett. 2010. V. 97. P. 262502-1-4.
  52. Zeng Z.M., Amiri P.K., Rowlands G. et al. Effect of resistance–area product on spin-transfer switching in MgO-based magnetic tunnel junction memory cells // Appl. Phys. Lett. 2011. V. 98. P. 072512-1-5.
  53. Parkin S., Yang S.-H. Memory on the racetrack // Nat. Nanotechnol. 2015. V. 10. P. 195–198.
  54. Zhang Y., Zhao W.S., Klein J.-O., Chappert C., Ravelosona D. Current induced perpendicular magnetic-anisotropy racetrack memory with magnetic field assistance // Appl. Phys. Lett. 2014. V. 104. P. 032409-1-5.
  55. Zhang Y., Zhang C., Nan J., Zhang Z., Zhang X., Klein J.-O., Ravelosona D., Sun G., Zhao W. Perspectives of racetrack memory for large-capacity on-chip memory: from device to system // IEEE Trans Magn. 2015. P. 1–10.
  56. Lepadatu S., Saarikoski H., Beacham R. et al. Synthetic ferrimagnet nanowires with very low critical current density for coupled domain wall motion // Sci. Rep. 2017. V. 7. P. 1–7.
  57. Zhang Y., Zhao W.S., Ravelosona D., Klein J.-O., Kim J.O., Chappert C. Perpendicular-magnetic-anisotropy CoFeB racetrack memory with magnetic field assistance // J. Appl. Phys. 2012. V. 111. P. 032409-1-4.
  58. Tomasello R., Puliafito V., Martinez E., Manchon A., Ricci M., Carpentieri G. Finocchio Performance of synthetic antiferromagnetic racetrack memory: domain wall versus skyrmion // J. Phys. D: Appl. Phys. 2017. V. 50. P. 1–21.
  59. Geng L.D., Jin Y.M. Magnetic vortex racetrack memory // J. Magn. Magn. Mater. 2017. V. 423. P. 84–89.
  60. Tomasello R., Martinez E., Zivieri R. et al. A strategy for the design of skyrmion racetrack memories // Sci. Rep. 2014. V. 4. P. 6784-1-6.
  61. Muhlbauer S., Binz B., Jonietz F., Pfleiderer C., Rosch A. Skyrmion lattice in a chiral magnet // Science 2009. V. 323. P. 915–919.
  62. Fert A., Cros V., Sampaio J. Skyrmions on the track // Nat.Nano. 2013. V. 8. P. 152–156.
  63. MuЁnzer W., Neubauer A., Adams T. et al. Skyrmion lattice in the doped semiconductor Fe1-xCOxSi // Phys. Rev. 2010. V. B 81. 041203-1-5.
  64. Yu X.Z., Kanazawa N., Onose Y. et al. Near room-temperature formation of a skyrmion crystal in thin films of the helimagnet FeGe. // Nat. Mater. 2011. V. 10. P. 106–109.
  65. Heinze S., Menzel M. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions // Nat. Phys. 2011. V. 7. P. 713–718.
  66. Pizzini S., Vogel J., Rohart S. et al. Chirality-induced asymmetric magnetic nucleation in Pt/Co/AlOx ultrathin microstructures // Phys. Rev. Lett. 2014. V. 113. P. 047203-1-5.
  67. Olivier B., Jan V., Hongxin Y., Stefania P. Dayane DSC Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures // Nat. Nanotechnol. 2016. V. 11. P. 449–454.
  68. Nayak A.K., Kumar V., Ma T., Werner P., Pippel E., Sahoo R., Damay F., Rößler U.K., Felser C., Parkin S.S.P. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials // Nature. 2017. V. 548. P. 561–566.
  69. Woo S., Litzius K., Krüger B., Im M.-Y. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets // Nat. Mater. 2016. V. 15. P. 501–506.
  70. Zhang X., Zhou Y., Ezawa M. Magnetic bilayer-skyrmions without skyrmion Hall effect // Nat. Commun. 2016. V. 7. P. 10293-1-6.
  71. Gan W.L., Krishnia S., Lew W.S. Efficient in-line skyrmion injection method for synthetic antiferromagnetic systems // New J. Phys. 2018. V. 20.
  72. Zhang X., Zhao G. P., Fangohr H. et al. Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory // Sci. Rep. 2015. V. 5. P. 7643-1-4.
  73. Kang W., Huang Y., Zheng C., Lv W., Lei N., Zhang Y., Zhang X., Zhou Y., Zhao W. Voltage controlled magnetic skyrmion motion for racetrack memory // Sci. Rep. 2016. V. 6. P. 23164-1-5.
  74. Ionescu D., Kovaci M. Improving the data storage performances with layered nanowires for synthetic antiferromagnetic racetrack memories // Rom. Rep. Phys. 2017. V. 69. P. 501-1-13.
  75. Gomonay E.V., Loktev, V.M. Spintronics of antiferromagnetic systems // Low.Temp. Phys. 2014. V. 40. P. 17–35.
  76. Kriegner D., Vyborny K., Olejnik K. et al. Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe // Nat. Commun. 2016. P. 1–7.
  77. Jungwirth T., Marti X., Wadley P., Wunderlich J. Antiferromagnetic spintronics // Nat. Nanotechnol. 2016. V. 11. P. 231–241.
  78. Wang Y.Y., Song C., Zhang J.Y., Pan F. Spintronic materials and devices based on antiferromagnetic metals // Progr. Nat. Sci.: Mat. Int. 2017. V. 27. P. 208–216.
  79. Park B.G., Wunderlich J., Martí X. et al. A spin-valve like magnetoresistance of an antiferromagnet based tunnel junction // Nat. Mater. 2011. V. 10. P. 347–351.
  80. Gomonay O., Jungwirth T., Sinova J. Concepts of antiferromagnetic spintronics // Phys. Stat. Sol. RRL 2017. № 4. P. 42–47.
  81. Morales R., Kovylina M., Schuller I.K., Labarta A., Battle X. Antiferromagnetic/ferromagnertic nanostructures for multidigit storage units // Appl. Phys. Lett. 2014. V. 104. P. 032401-1-5.
  82. Coileain C.O., Wu H.C. Materials, devices and spin transfer torque in antiferromagnetic spintronics: a concise review // Spin 2017. V. 7. P. 1740014-1-6.
  83.  
Дата поступления: 15 августа 2018 г.