350 rub
Journal Achievements of Modern Radioelectronics №2 for 2020 г.
Article in number:
Magnetic storage technologies
Type of article: scientific article
DOI: 10.18127/j20700784-202002-03
UDC: 539.216.2
Authors:

V.G. Shadrov – Ph.D. (Phys.-Math.), Leading Research Scientist, 

Scientific-Practical Materials Research Centre

A.E. Dmitrieva – Junior Research Scientist, 

Scientific-Practical Materials Research Centre

A.V. Boltushkin – Ph.D. (Phys.-Math.), Leading Research Scientist, 

Scientific-Practical Materials Research Centre

E-mail: nemtsevich@ifttp.bas-net.by

Abstract:

The increasing need and the need to increase the capacity and recording density of information storage devices and their improvement is accompanied by the approximation of the size of memory cells (bits) to the limit values. The physical limits for the further scaling of devices such as hard magnetic disks and non-volatile memory with random access are the minimum bit volume due to superparamagnetic fluctuations, a large amount of switching current in STT-RAM, thermal damage in phase-inverse memory materials, charge fluctuations in floating devices shutter, etc., as well as restrictions on the working volume of ongoing technological processes. The avalanche-like growth of information flows, as well as the requirement to increase the performance of computing systems, creates a demand for reliable ultra-fast storage of information.

The purpose of the work is to analyze the main trends in the development of materials and parameters of information storage devices based on magnetic technologies.

Magnetoresistive memory with memory cell switching via spin moment transfer is potentially capable of becoming universal memory and changing the architecture of computers.

Pages: 30-44
References
  1. Bhatti S., Sbiaa R., Hirihata A., Ohno H., Fukami S., Piramanayagam S.N. Spintronics based random access memory: a review. Mater. Today. 2017. V. 20. P. 530–548.
  2. Stamps R., Breitkreuts S., Akerman J., Chumak A. et al. The 2014 magnetism roadmap. J. Phys. D.: Appl. Phys. 2014. V. 47. P. 333001-1-28.
  3. Chaudhary R., Kansal A. A perspective on the future of the magnetic hard disk drive technology. Int. J. Tech. Res. Appl. 2015. V. 3. P. 63–74.
  4. Wang F., Xu X.-H. Writability issues in high-anisotropy perpendicular magnetic recording media. Chin. Phys. B. 2014. V. 23.  P. 036802-1-12.
  5. Shadrov V.G., Dmitrieva A.E., Boltushkin A.V. Superparamagnitnyj predel i termostabil'nost' sred magnitnoj zapisi. Uspehi sovremennoj radioelektroniki. 2015. № 12. S. 67–76. [in Russian]
  6. Scheunert G., Heinonen O., Hardeman R., Lapicki A., Gubbins M., Bowman R.M. A review of high magnetic moment thin films for  microscale and nanotechnology applications. Appl. Phys. Rev. 2016. V. 3. P. 011301-1-44.
  7. Weller D., Parker G., Mosendz O., Champion E., Stipe B., Wang X., Klemmer T., Ju G., Ajan A. A HAMR media technology roadmap to an areal density of 4 Tb/in2. IEEE Trans. Magn. 2014. V. 50. P. 3100108-1-8.
  8. Okamoto S., Kikuchi N., Furuta M., Kitakami O., Shimatsu T. Microwave assisted magnetic recording technologies and related physics. J. Phys. D: Appl. Phys. 2015. V. 48. P. 353001-1-7.
  9. Wood R., Williams M., Kavcic A., Miles J. The feasibility of magnetic recording at 10 Tb/inch2 on conventional media. IEEE Trans. Magn. 2009. V. 445. P. 917–923.
  10. Albrecht T.R., Bedau D., Dobisz E. et al. Bit patterned media at 1 Tdot/in2 and beyond. IEEE Trans. Magn. 2013. V. 49. P. 773–778.
  11. Wang S., Wang Y., Victora R.H. Shingled magnetic recording on bit patterned media at 10 Tb/in2. IEEE Trans. Magn. 2013. V. 49. P. 3644–3647.
  12. Hirohata A., Takahashi K. Future perspectives for spintronic devices. J. Phys. D.: Appl. Phys. 2014. V. 47. P. 193001-1-40.
  13. Suess D., Vogler C., Abert C., Bruckner F., Windl R., Breth L. Fundamental limits in heat-assisted magnetic recording and methods to overcome it with exchange spring structures. J. Appl. Phys. 2015. V. 117. P. 163913-1-4.
  14. Gavrila H. Achievements and expected issues in heat assisted magnetic recording. J. Engineer. Sci. Innovation 2017. V. 2. P. 16–26.
  15. Silva T.J., Shaw J.M., Nembach H.T. et al. Head and media challenges for 3 Tb/in2 microwave assisted magnetic reсоrding. IEEE Trans. Magn. 2014. V. 50. P. 1–9.
  16. Zhou N., Traverso L.M., Xu X. Power delivery and self-heating in nanoscale near-field transducer for heat-assisted magnetic recording. Nanotechnology. 2015. V. 26. P. 134001-1-7.
  17. Abadia N., Bello F., Zhong C. et al. Optical and thermal analysis of the light-heat conversion process employing an antenna-based hybrid plasmonic waveguide for HAMR. Optics Express. 2018. V. 26. P. 1752-1-14.
  18. Datta A., Xu X. Comparative study of optical near-field transducers for heat-assisted magnetic recording. Opt. Eng. 2017. V. 56. 121906-1-5.
  19. Xiong S., Kim J., Wang Y., Zhang X., Bogy D. A two-stage heating scheme for heat assisted magnetic recording. J. Appl. Phys. 2014. V. 115. P. 17B702-1–3.
  20. Xu B.X., Ji R., Toh Y.T., Hu J.F., Li J.M., Zhang J. Performance benefits from pulsed laser heating in heat assisted magnetic recording. J. Appl. Phys. 2014. V. 115. P. 17B701-1-4.
  21. Scheunert G., Cohen S.R., Kullock R. et al. Grazing-incidence optical magnetic ording with super-resolution. Beilstein J. Nanotechnol. 2017. V. 8. P. 28–37.
  22. Chen Y.J., Yang H.Z., Leong S.H., Santoso B., Shi J.Z., Xu B.X., Tsai J.W. Heat-assisted recording on bottom layer of dual recording layer perpendicular magnetic recording media for two and half dimensional (2.5 D) magnetic data storage. J. Appl. Phys. 2015. V. 117. P. 17C106-1-4.
  23. Rivkin K., Benakli M., Tabat N., Yin H. Physical principles of microwave assisted magnetic recording. J. Appl. Phys. 2014. V. 115. 214312 -1-12.
  24. Greaves S.J., Kanai Y., Muraoka H. Microwave-assisted magnetic recording on dual-thickness and dual-layer bit patterned media. IEEE Trans. Magn. 2016. V. 51. P. 253756-1-6.
  25. Chen T., Dumas R. K., Eklund A. et al. Spin-torque and spin- Hall nano-oscillators. Proc. IEEE. 2016. V. 104. P. 1919-1-24.
  26. Zhang M., Zhou T., Yuan Z. Analysis of switchable spin-torque oscillator for microwave assisted magnetic recording. Adv. Cond. Matter. Phys. 2015. P. 457456-1-6.
  27. Sani S., Persson J., Mohseni S. et al. Mutually synchronized bottom-up multi-nanocontact spintorque oscillators. Nat. Commun. 2013. V. 4. P. 2731-2734.
  28. Vogler C., Abert C., Bruckner F., Suess D., Praetorius D. Heat-assisted magnetic recording of bit-patterned media beyond 10 Tb/in2. Appl.Phys. Lett. 2016. V. 108. P. 102406-1-6.
  29. Muthsam O., Vogler C., Suess D. Noise reduction in heat-assisted magnetic recording of bit-patterned media by optimizing a high/low Tc bilayer structure. J. Appl. Phys. 2017. V. 122. P. 213903-1-7.
  30. Amos N., Butler J., Lee B. et al. Multilevel-3D bit patterned media with 8 signal levels per nanocolumn. PlosOne. 2012. V. 7.  P. e40134-1-7.
  31. Bhattacharyya S. Iron nitride family at reduced dimensions: A review of their synthesis protocols and structural and magnetic properties. J. Phys. Chem. C 2015. V. 119. P. 1601–1622.
  32. Ward C., Scheunert G., Hendren W.R., Bowman R.M. Realizing the high moment in Fe/Cr/Gd: The role of the rare earth. Appl. Phys. Lett. 2013. V. 102. P. 092403-1-4.
  33. Shadrov V.G., Dmitrieva A.E., Boltushkin A.V. Magnitnye golovki chteniya-zapisi: materialy, tehnologii, perspektivy. Uspehi sovremennoj radioelektroniki. 2018. № 4. S. 3–13. [in Russian]
  34. Kautzky M.C., Blaber M.G. Materials for heat-assisted magnetic recording heads. MRS Bull. 2018. V. 43. P. 100–105.
  35. Trassin M. Low energy consumption spintronics using multiferroic heterostructures. J. Phys. Cond. Matter 2016 V. 28. P. 033001-1-5.
  36. John R., Berrita M., Hinzke D. et al. Magnetization switching of FePt nanoparticle recording medium by femtosecond laser pulses. Sci. Rep. 2017. V. 7. P. 4114–4117.
  37. Hirohata A., Sukegawa H., Yanagihara H., Zutic I., Seki T., Mizukami S., Swaminathan R. Roadmap for emerging materials for spintronic device applications. IEEE Trans. Magn. 2015. V. 51. P. 1–11.
  38. Hirohata A., Sagar J., Lari L., Fleet L.R., Lazarov V.K. Heusler-alloy films for spintronic devices. Appl. Phys. A. 2013. V. 111. P. 423–430.
  39. Kompaniya IBM vnov' ustanovila rekord po plotnosti zapisi na magnitnuyu lentu. Vysokotehnologichnye i prodvinutye novosti na HiNews.ru. 12.09.2017. URL: https://hi-news.ru/technology/kompaniya-ibm-vnov-ustanovila-rekord-po-plotnosti-zapisi-na-magnitnuyulentu.html
  40. Sbia R., Meng H., Piramanayagam S.N. Materials with perpendicular magnetic anisotropy for magnetic random access memory. Phys. Stat. Sol. RRL 2011.V. 5. P. 413–419.
  41. Chen E., Apalkov D., Diao Z., Driskill-Smith A., Druist D., Lottis D. Advances and future prospects of spin-transfer torque random  access memory. IEEE Trans. Magn. 2010. V. 46. P. 1873–1878.
  42. Wang K.L., Khalili Amiri P. Nonvolatile spintronics: perspectives on instant-on nonvolatile nanoelectronic systems. SPIN. 2012. V. 2. 1250009-1-6.
  43. Paul S., Saibal M., Swarup B. A circuit and architecture codesign approach for a hybrid CMO&-STTRAM nonvolatile FPGA. IEEE Trans. Nanotechnol. 2011. V. 10. P. 385–394.
  44. Wu T., Bur A., Wong K. et al. Electrical control of reversible and permanent magnetization reorientation for magnetoelectric memory devices. Appl. Phys. Lett. 2011. V. 98. P. 262504-1-7.
  45. Khalili Amiri P., Wang K. L. Voltage-controlled magnetic anisotropy in spintronic devices. SPIN 2012. V. 2. P. 1240002-1-5.
  46. Cai H., Kang W. Naviner L.A., Yang J., Zhao W. High performance MRAM with spin-transfer torque and voltage-controlled magnetic anisotropy effects. Appl. Sci. 2017. V. 7. P. 929-1-13.
  47. Liu L., Pai C.-F., Li Y., Tseng H.W., Ralph D.C., Buhrman R.A. Spin-torque switching with the giant spin Нall effect of tantalum.  Science. 2012. V. 336. P. 555–558.
  48. Wang K.L., Ovchinnikov I., Xiu F., Khitun A., Bao M. From nanoelectronics to nano-spintronics. J. Nanosci. Nanotechnol. 2011. V. 11. 306–313.
  49. Liu H., Bedau D., Backes D., Katine J.A., Langer J., Kent A.D. Ultrafast switching in magnetic tunnel junction based orthogonal spin transfer devices. Appl. Phys.Lett. 2010. V. 97. P. 242510-1-5.
  50. Bedau D., Liu H., Sun J.Z., Katine J.A., Fullerton E.E., Mangin S., Kent A.D. Spin-transfer pulse switching: from the dynamic to the thermally activated regime. Appl. Phys. Lett. 2010. V. 97. P. 262502-1-4.
  51. Zeng Z.M., Amiri P.K., Rowlands G. et al. Effect of resistance–area product on spin-transfer switching in MgO-based magnetic tunnel junction memory cells. Appl. Phys. Lett. 2011. V. 98. P. 072512-1-5.
  52. Parkin S., Yang S.-H. Memory on the racetrack. Nat. Nanotechnol. 2015. V. 10. P. 195–198.
  53. Zhang Y., Zhao W.S., Klein J.-O., Chappert C., Ravelosona D. Current induced perpendicular magnetic-anisotropy racetrack memory with magnetic field assistance. Appl. Phys. Lett. 2014. V. 104. P. 032409-1-5.
  54. Zhang Y., Zhang C., Nan J., Zhang Z., Zhang X., Klein J.-O., Ravelosona D., Sun G., Zhao W. Perspectives of racetrack memory for large-capacity on-chip memory: from device to system. IEEE Trans Magn. 2015. P. 1–10.
  55. Lepadatu S., Saarikoski H., Beacham R. et al. Synthetic ferrimagnet nanowires with very low critical current density for coupled domain wall motion. Sci. Rep. 2017. V. 7. P. 1–7.
  56. Zhang Y., Zhao W.S., Ravelosona D., Klein J.-O., Kim J.O., Chappert C. Perpendicular-magnetic-anisotropy CoFeB racetrack memory with magnetic field assistance. J. Appl. Phys. 2012. V. 111. P. 032409-1-4.
  57. Tomasello R., Puliafito V., Martinez E., Manchon A., Ricci M., Carpentieri G. Finocchio Performance of synthetic antiferromagnetic racetrack memory: domain wall versus skyrmion. J. Phys. D: Appl. Phys. 2017. V. 50. P. 1–21.
  58. Geng L.D., Jin Y.M. Magnetic vortex racetrack memory. J. Magn. Magn. Mater. 2017. V. 423. P. 84–89.
  59. Tomasello R., Martinez E., Zivieri R. et al. A strategy for the design of skyrmion racetrack memories. Sci. Rep. 2014. V. 4. P. 6784-1-6.
  60. Muhlbauer S., Binz B., Jonietz F., Pfleiderer C., Rosch A. Skyrmion lattice in a chiral magnet. Science 2009. V. 323. P. 915–919.
  61. Fert A., Cros V., Sampaio J. Skyrmions on the track. Nat.Nano. 2013. V. 8. P. 152–156.
  62. MuЁnzer W., Neubauer A., Adams T. et al. Skyrmion lattice in the doped semiconductor Fe1-xCOxSi. Phys. Rev. 2010. V. B 81. P. 041203-1-5.
  63. Yu X.Z., Kanazawa N., Onose Y. et al. Near room-temperature formation of a skyrmion crystal in thin films of the helimagnet FeGe. Nat. Mater. 2011. V. 10. P. 106–109.
  64. Heinze S., Menzel M. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 2011. V. 7. P. 713–718.
  65. Pizzini S., Vogel J., Rohart S. et al. Chirality-induced asymmetric magnetic nucleation in Pt/Co/AlOx ultrathin microstructures. Phys. Rev. Lett. 2014. V. 113. P. 047203-1-5.
  66. Olivier B., Jan V., Hongxin Y., Stefania P. Dayane DSC Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotechnol. 2016. V. 11. P. 449–454.
  67. Nayak A.K., Kumar V., Ma T., Werner P., Pippel E., Sahoo R., Damay F., Rößler U.K., Felser C., Parkin S.S.P. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials. Nature. 2017. V. 548. P. 561–566.
  68. Woo S., Litzius K., Krüger B., Im M.-Y. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 2016. V. 15. P. 501–506.
  69. Zhang X., Zhou Y., Ezawa M. Magnetic bilayer-skyrmions without skyrmion Hall effect. Nat. Commun. 2016. V. 7. P. 10293-1-6.
  70. Gan W.L., Krishnia S., Lew W.S. Efficient in-line skyrmion injection method for synthetic antiferromagnetic systems. New J. Phys. 2018. V. 20.
  71. Zhang X., Zhao G. P., Fangohr H. et al. Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory. Sci. Rep. 2015. V. 5. P. 7643-1-4.
  72. Kang W., Huang Y., Zheng C., Lv W., Lei N., Zhang Y., Zhang X., Zhou Y., Zhao W. Voltage controlled magnetic skyrmion motion for racetrack memory. Sci. Rep. 2016. V. 6. P. 23164-1-5.
  73. Ionescu D., Kovaci M. Improving the data storage performances with layered nanowires for synthetic antiferromagnetic racetrack memories. Rom. Rep. Phys. 2017. V. 69. P. 501-1-13.
  74. Gomonay E.V., Loktev, V.M. Spintronics of antiferromagnetic systems. Low.Temp. Phys. 2014. V. 40. P. 17–35.
  75. Kriegner D., Vyborny K., Olejnik K. et al. Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe. Nat. Commun. 2016. P. 1–7.
  76. Jungwirth T., Marti X., Wadley P., Wunderlich J. Antiferromagnetic spintronics. Nat. Nanotechnol. 2016. V. 11. P. 231–241.
  77. Wang Y.Y., Song C., Zhang J.Y., Pan F. Spintronic materials and devices based on antiferromagnetic metals. Progr. Nat. Sci.: Mat. Int. 2017. V. 27. P. 208–216.
  78. Park B.G., Wunderlich J., Martí X. et al. A spin-valve like magnetoresistance of an antiferromagnet based tunnel junction. Nat. Mater. 2011. V. 10. P. 347–351.
  79. Gomonay O., Jungwirth T., Sinova J. Concepts of antiferromagnetic spintronics. Phys. Stat. Sol. RRL 2017. № 4. P. 42–47.
  80. Morales R., Kovylina M., Schuller I.K., Labarta A., Battle X. Antiferromagnetic/ferromagnertic nanostructures for multidigit storage units. Appl. Phys. Lett. 2014. V. 104. P. 032401-1-5.
  81. Coileain C.O., Wu H.C. Materials, devices and spin transfer torque in antiferromagnetic spintronics: a concise review. Spin 2017. V. 7. P. 1740014-1-6.

 

Date of receipt: 15 августа 2018 г.