350 руб
Журнал «Успехи современной радиоэлектроники» №12 за 2015 г.
Статья в номере:
Суперпарамагнитный предел и термостабильность сред магнитной записи
Авторы:
В.Г. Шадров - к.ф.-м.н., вед. науч. сотрудник, ГНПО «НПЦ НАН Беларуси по материаловедению» (г. Минск) А.Э. Дмитриева - мл. науч. сотрудник, ГНПО «НПЦ НАН Беларуси по материаловедению» (г. Минск) А.В. Болтушкин - к.ф.-м.н., ст. науч. сотрудник, ГНПО «НПЦ НАН Беларуси по материаловедению» (г. Минск). E-mail: nemtsevich@ifttp.bas-net.by
Аннотация:
Проанализирована роль термоактивируемых процессов перемагничивания в средах магнитной записи, в частности их связь с магнитным взаимодействием отдельных магнитных элементов (частиц), распределением полей перемагничивания, термостабильностью магнитных сред и плотностью магнитной записи. Рассмотрены требования к материалам и способам магнитной записи, а также перспективы дальнейшего развития сред магнитной записи.
Страницы: 67-76
Список источников

 

  1. Piramanayagam S.N., Srinvasan K. Recording media research for future hard disk drives // J. Magn. Magn. Mater. 2009.V. 321. P. 485-494.
  2. Plumer M.L., Ek J., Cain W.C. New paradigms in magnetic recording // Physics in Canada. 2011. V.67. P.25-29.
  3. Terris B.D.Fabrication challenges for patterned recording media // J. Magn. Mater. 2009. V. 321. P. 512-517.
  4. Moser A. et al. Magnetic recording: advancing into the future // J. Phys. D.: Appl. Phys. 2002. V. 35. P.R157-R167.
  5. Richter H.J.Recent advances in the recording physics of thin-film media // J. Phys. D: Appl. Phys. 1999. V. 32. P. R147-R164.
  6. Weller D., Moser A. Thermal effect limits in ultrahigh-density magnetic recording // IEEE Trans. Magn. 1999. V. 35. P. 4423-4439.
  7. Terris B.D., Thomson T. Nanofabricated and self-assembled magnetic structures as data storage media // J. Phys. D: Appl. Phys. 2005. V. 38. P.R199-R222.
  8. Ross C.A. Patterned magnetic recording media // Ann. Rev. Mater. Res. 2001. V. 31. P. 203-235.
  9. Weller D. et al. L10 FePtX-Y media for heat-assisted magnetic recording// Phys. Stat. Sol.A. 2013. V.210. P.1245-1260.
  10. Wood R. The feasibility of magnetic recording at 1 terabit per square inch // IEEE Trans. Magn. 2000. V. 36. P. 36-42.
  11. Шадров В.Г. Временные магнитные эффекты и термостабильность носителей магнитной записи // Успехи современной радиоэлектроники. 2005. №12. С. 70-76.
  12. Bedanta S., Kleemann W. Supermagnetism // J. Phys. D.: Appl. Phys. 2009. V. 42. P. 013001-1-28.
  13. Chantrell R.W., O-Grady K. Magnetic characterization of recording media // J. Phys. D: Appl. Phys. 1992.V. 25. P. 1-23.
  14. Weller D. et al. High Ku materials approach to 100 Gbits/in2 // IEEE Trans. Magn. 2000. V. 36. P. 10-15.
  15. Charap S.U.Thermal stability of recorded information at high densities // IEEE Trans. Magn. 1997.V. 33.P. 978-983.
  16. Ross C.A. et al. Microstructure evoluation and thermal stability of thin CoCrTa/Cr films for longitudinal magnetic recording media // IEEE Trans. Magn. 1998. V. 34. Р. 282-292.
  17. Choe G. et al. Recording characteristics and thermal stability comparisons between antiferromagnetically coupled and conventional media // J. Appl. Phys. 2002. V.91. P.7665-7670.
  18. Wu X.W. et al. Studies of switching field and thermal energy barrier distributions in FePt nanoparticle system // J. Appl. Phys. 2003. V. 93. P. 7181-7183.
  19. Albrecht M. et al. Thermal stability and recording properties of sub-100 nm patterned CoCrPt perpendicular media // J. Appl. Phys. 2002. V.91. P.6845-6848.
  20. Victora R.H., Shen X. Composite media for perpendicular magnetic recording // IEEE Trans. Magn. 2005. V.41. P.537-542.
  21. Suess D. Multilayer exchange spring media for magnetic recording // Appl. Phys. Lett. 2006. V. 89. P. 113105-1-3.
  22. Wang J.P., Shen W.K., Bai J. Exchanged coupled composite media for perpendicular magnetic recording // IEEE Trans. Magn. 2005. V.41. P.3181-3186.
  23. Rottmayer R.E. et al.Heat-assisted magnetic recording // IEEE Trans. Magn. 2006.V. 42. P.2417-2421.
  24. Wang X. et al. HAMR recording limitations and extendibility // IEEE Trans. Magn. 2013. V. 49. P. 696-692.
  25. Kryder M.H. et al.Heat assisted magnetic recording // Proc. IEEE 2008. V.96. P.1810-1835.
  26. Zhou N. et al.Plasmon near-field transducer for heat-assisted magnetic recording // Nanophotonics 2014. V.3. P.141-155.
  27. Sendur K., Challener W. Patterned medium for heat assisted magnetic recording // Appl. Phys. Lett. 2009. V.94. P.032503-1-3.
  28. Hellwig O. et al. Bit patterned media based on block copolymer directed assembly with narrow magnetic switching field distribution // Appl. Phys. Lett. 2010. V. 96. P.052511-1-3.
  29. Sbia R., Piramanayagam S.N. Patterned media towards nanobit magnetic recording: fabrication and challenges // Rec. Pat. Nanotech. 2007. V. 1. P.29-40.
  30. Kikitsu A. Prospects for bit patterned media for high-density magnetic recording // J. Magn. Mater. 2009. V. 321. P. 526-530.
  31. Wood R. et al. Perpendicular recording: the promise and the problem // J. Magn. Mater. 2001. V. 235. P. 1-16.
  32. Nolan T., Valcu B., Richter H.J. Effect of composite designs on writability and thermal stability of perpendicular recording media // IEEE Trans. Magn. 2011. V. 47. P. 63-68.
  33. Piramanayagam S.N. Perpendicular recording media for hard disk drives // J. Appl. Phys. 2007. V. 102. P. 011301-1-22
  34. Selvan C., Pornchai S. A spinstand study in determining the optimum shingling percentage for shingled write recording // IEEE Trans. Magn. 2013. V. 49. P. 2544-2547.
  35. Sonobe Y. et al.Thermally stable CGC perpendicular recording media with Pt-rich CoPtCr and thin Pt layers // IEEE Trans. Magn. 2002. V. 38. P. 2006-2011.
  36. Sonobe Y.et al. Coupled granular/continuous perpendicular recording media with soft magnetic underlayer // J. Appl. Phys. 2002.V. 91. P.8055-8057.
  37. Wang H. et al. Spontaneously-formed FePt graded granular media with a large gain factor // IEEE Magn. Lett. 2012. V. 3. P. 450014-1-4.
  38. Ma B. et al. Structural and magnetic properties of a core-shell type L10 FePt/Fe exchange coupled nanocomposite with tilted easy axis // J. Appl. Phys. 2011. V. 109. P. 083907-1-5.
  39. Goll D., Macke S. Thermal stability of ledge-type L10-FePt/Fe exchange spring nanocomposites for ultrahigh recording density//Appl. Phys. Lett. 2008. V.93. P.152512-1-3.
  40. Ma B. et al. Core-shell exchange coupled nanocomposites for ultrahigh recording density // IEEE Trans. Magn. 2010. V. 46. P. 2345-2349.
  41. Hauet T. et al. Role of reversal incoherency in reducing switching field and switching field distribution of exchange couple composite bit patterned media // Appl. Phys. Lett. 2009. V. 95. P.262504-1-3.
  42. Tudosa I. et al. Thermal stability of patterned Co/Pd nanodot arrays // Appl. Phys. Lett. 2012. V.100. P.102401-1-4.
  43. Elbagi N. et al. Role of dipolar interactions on the thermal stability of high-density bit-patterned media// IEEE Magn. Lett. 2012. V. 3. P.4500204-1-4.
  44. Krone P. et al. Investigation of the magnetization reversal of a magnetic dot array of Co/Pt multilayers // J. Nanopart. Res. 2011. V. 13. P.5587-5593.
  45. Bertram H.N., Longsfield B. Energy barriers in composite media grains // IEEE Trans. Magn. 2007. V.43. P.2145-2147.
  46. Cheng J.Y. et al. Magnetic nanostructures from block copolymer lithography: hysteresis, thermal stability and magnetoresistence // Phys. Rev.B. 2004. V. 70. P. 064417-9.
  47. Li X. et al. Preparation and properties of perpendicular CoPt magnetic nanodot arrays patterned by nanosphere lithography // J. Vac. Sci. Technol. A. 2009. V.27. P.1062-1064.
  48. Wood R. Future hard disk drive systems // J. Magn. Mater. 2009.V. 321. P. 555-561.
  49. Dutson J. et al. Magnetisation reversal in media with perpendicular anisotropy // J. Magn. Matter. 2006. V. 304. P. 51-55.
  50. Wu A. et al. HAMR Areal Density Demonstration of 1+ Tbpsi on Spin-stand // IEEE Trans. Magn. 2013, V. 49. P. 779-782.
  51. Xu B.X. et al. Thermal issues and their effects on heat-assisted magnetic recording system // J. Appl. Phys. 2012.V. 111.  P. 07B701-1-4.
  52. Abes M. et al. Magnetic switching field distribution of patterned CoPd dots // J. Appl. Phys. 2009. V.105.P. 113916-1-8.
  53. Шадров В.Г., Немцевич Л.В., Болтушкин А.В. Распределение полей перемагничивания и магнитное  поведение структурированных сред магнитной записи // Успехи современной радиоэлектроники. 2015. № 2.
  54. Shiroishi Y. et al. Future options for HDD storage // IEEE Trans. Magn. 2009 V. 45. P. 3816-3822.
  55. Zhu J.G., Zhu X., Tang Y. Microwave assisted magnetic recording // IEEE Trans. 2008. V. 44. P. 125-131.
  56. Okamoto S. et al. Microwave assisted switching mechanism and its stable switching limit // J. Appl. Phys. 2010. V. 107.  P. 123914-1-3.
  57. Zou Y.Y. et al. Tilted media in a perpendicular recording system for high areal density recording // Appl. Phys. Lett. 2003. V. 82. P. 2473-2475.
  58. Gao K.Z., Bertram H. Transition jitter estimates in tilted and conventional perpendicular recording media at 1 Tbit/in2 // IEEE Trans. Magn. 2003.V. 39. P. 704-709.
  59. Wang J.P. et al. Approaches to tilted magnetic recording for extremely high areal density // IEEE Trans. Magn. 2003. V. 39. P. 1930-1935.
  60. Wiedwald U. et al. Tuning the properties of magnetic thin films by interaction with periodic nanostructures // Beilstein J. Nanotech. 2012. V. 3. P. 831-842.
  61. Laughlin D.E. et al. Fabrication, microstructure, magnetic and recording properties of percolated perpendicular media // IEEE Trans Magn. 2007. V. 43. P. 693-697.
  62. Wachenschwanz D. et al. Design of manufacturable discrete track recording medium // IEEE Trans. Magn. 2005. V. 41. P. 670-675.
  63. Evans R.F.L. et al. On beating the superparamagnetic limit with exchange bias // EPL. 2009. V. 88. P. 57004-1-4.
  64. Oustler T.A. et al. Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet // Nature communications 2012.V.3.P.666-1-8.
  65. Richter H.J.The transition from longitudinal to perpendicular recording // J. Phys. D: Appl. Phys. 2007. V. 40. P. R149-R164.
  66. Шадров В.Г.Межкристаллитное магнитное взаимодействие и свойства магнитных наноструктур. Минск: Изд-воБГУ. 2010.
  67. Evans R.F.L. et al. Thermally induced error: Density limit for magnetic data storage // Appl. Phys. Lett. 2012.V. 100. P. 102402-1-3.
  68. Richter H.J. et al. The thermodynamic limits of magnetic recording // J. Appl. Phys. 2012.V. 111. P. 033909-1-8.
  69. Suess D., Schrefl T. Breaking the thermally induced write error in heat assisted recording by using low and high Tc materials // Appl. Phys. Lett. 2013. V. 102. P. 162405-1-4.
  70. Marchon B.The head-disk interface roadmap to an areal density of 4 Tbits/ in2 // Adv. Trib. 2013. P. 1-8.
  71. Evans R.F.L. et al. Atomistic spin model simulation of magnetic nanomaterials // J. Phys.: Cond. Mat. 2014. V. 26. P. 103202-1-23.