350 rub
Journal Achievements of Modern Radioelectronics №12 for 2015 г.
Article in number:
Superparamagnetic limit and thermal stability of magnetic recording media
Authors:
V.G. Shadrov - Ph.D. (Phys.-Math.), Leading Research Scientist, Scientific-Practical Materials Research Centre (Minsk) A.E. Dmitrieva - Junior Research Scientist, Scientific-Practical Materials Research Centre (Minsk) A.V. Boltushkin - Ph.D. (Phys.-Math.), Senior Research Scientist, Scientific-Practical Materials Research Centre (Minsk). E-mail: nemtsevich@ifttp.bas-net.by
Abstract:
The preservation of the growth rates density magnetic recording of the last two decades due to the advances in materials science magnetic media, among which is noted magnetoresistive read head, antiferromagnet-associated medium is a longitudinal magnetic recording medium granular oxide perpendicular magnetic recording, and servo systems and development of fundamental problems of physics of magnetism, among which the most important are the processes of magnetization reversal superparamagnetism of small particles and the thermal stability of magnetic recording media, the relationship of the processes of magnetization reversal with magnetic intergranular interaction and operational characteristics of magnetic nanostructures. Based on the research of magnetic time effects in the work of analyzes role of heat activated magnetization reversal processes in magnetic recording media, in particular their relation with the magnetic interaction between individual magnetic elements (particles), the distribution of the fields of magnetization reversal, thermal stability of magnetic media and magnetic recording density. It is shown, in particular, that the thermal stability of the multilayer structured environments increases with the number of layers, thus changing the mechanism of magnetization reversal can be reduced the magnitude of the coercive force HC and the width of the field distribution for magnetization reversal while maintaining the thermal stability. The distribution of values of the energy barriers for the studied high-packed structured environments and the average values of the HC is sufficiently large and is due to the dipole interaction. For further growth of the density of magnetic recording it is necessary to maintain a balance between signal-to-noise resistant small grains of the magnetic recording medium and opportunity (field records) head records (writability). In the framework of the traditional concept of magnetic recording media this involves the use of metabolic-related environments, particularly environments with a smooth change of the anisotropy and the structures of core-shell and termeszettudomanyi and microwave assisted magnetic recording, and more high anisotropic magnetic materials, primarily L10 FePt. The transition to a (bit)structured environments characterizes the change in the concept of magnetic recording, the maximum recording density involves a combination of technologies of creation of the structured environments with heat activated magnetic recording and accounting for thermal writаbility as another optimization parameter of the magnetic recording media.
Pages: 67-76
References

 

  1. Piramanayagam S.N., Srinvasan K. Recording media research for future hard disk drives // J. Magn. Magn. Mater. 2009.V. 321. P. 485-494.
  2. Plumer M.L., Ek J., Cain W.C. New paradigms in magnetic recording // Physics in Canada. 2011. V.67. P.25-29.
  3. Terris B.D.Fabrication challenges for patterned recording media // J. Magn. Mater. 2009. V. 321. P. 512-517.
  4. Moser A. et al. Magnetic recording: advancing into the future // J. Phys. D.: Appl. Phys. 2002. V. 35. P.R157-R167.
  5. Richter H.J.Recent advances in the recording physics of thin-film media // J. Phys. D: Appl. Phys. 1999. V. 32. P. R147-R164.
  6. Weller D., Moser A. Thermal effect limits in ultrahigh-density magnetic recording // IEEE Trans. Magn. 1999. V. 35. P. 4423-4439.
  7. Terris B.D., Thomson T. Nanofabricated and self-assembled magnetic structures as data storage media // J. Phys. D: Appl. Phys. 2005. V. 38. P.R199-R222.
  8. Ross C.A. Patterned magnetic recording media // Ann. Rev. Mater. Res. 2001. V. 31. P. 203-235.
  9. Weller D. et al. L10 FePtX-Y media for heat-assisted magnetic recording// Phys. Stat. Sol.A. 2013. V.210. P.1245-1260.
  10. Wood R. The feasibility of magnetic recording at 1 terabit per square inch // IEEE Trans. Magn. 2000. V. 36. P. 36-42.
  11. SHadrov V.G. Vremennye magnitnye ehffekty i termostabilnost nositelejj magnitnojj zapisi // Uspekhi sovremennojj radioehlektroniki. 2005. №12. S. 70-76.
  12. Bedanta S., Kleemann W. Supermagnetism // J. Phys. D.: Appl. Phys. 2009. V. 42. P. 013001-1-28.
  13. Chantrell R.W., O-Grady K. Magnetic characterization of recording media // J. Phys. D: Appl. Phys. 1992.V. 25. P. 1-23.
  14. Weller D. et al. High Ku materials approach to 100 Gbits/in2 // IEEE Trans. Magn. 2000. V. 36. P. 10-15.
  15. Charap S.U.Thermal stability of recorded information at high densities // IEEE Trans. Magn. 1997.V. 33.P. 978-983.
  16. Ross C.A. et al. Microstructure evoluation and thermal stability of thin CoCrTa/Cr films for longitudinal magnetic recording media // IEEE Trans. Magn. 1998. V. 34. R. 282-292.
  17. Choe G. et al. Recording characteristics and thermal stability comparisons between antiferromagnetically coupled and conventional media // J. Appl. Phys. 2002. V.91. P.7665-7670.
  18. Wu X.W. et al. Studies of switching field and thermal energy barrier distributions in FePt nanoparticle system // J. Appl. Phys. 2003. V. 93. P. 7181-7183.
  19. Albrecht M. et al. Thermal stability and recording properties of sub-100 nm patterned CoCrPt perpendicular media // J. Appl. Phys. 2002. V.91. P.6845-6848.
  20. Victora R.H., Shen X. Composite media for perpendicular magnetic recording // IEEE Trans. Magn. 2005. V.41. P.537-542.
  21. Suess D. Multilayer exchange spring media for magnetic recording // Appl. Phys. Lett. 2006. V. 89. P. 113105-1-3.
  22. Wang J.P., Shen W.K., Bai J. Exchanged coupled composite media for perpendicular magnetic recording // IEEE Trans. Magn. 2005. V.41. P.3181-3186.
  23. Rottmayer R.E. et al.Heat-assisted magnetic recording // IEEE Trans. Magn. 2006.V. 42. P.2417-2421.
  24. Wang X. et al. HAMR recording limitations and extendibility // IEEE Trans. Magn. 2013. V. 49. P. 696-692.
  25. Kryder M.H. et al.Heat assisted magnetic recording // Proc. IEEE 2008. V.96. P.1810-1835.
  26. Zhou N. et al.Plasmon near-field transducer for heat-assisted magnetic recording // Nanophotonics 2014. V.3. P.141-155.
  27. Sendur K., Challener W. Patterned medium for heat assisted magnetic recording // Appl. Phys. Lett. 2009. V.94. P.032503-1-3.
  28. Hellwig O. et al. Bit patterned media based on block copolymer directed assembly with narrow magnetic switching field distribution // Appl. Phys. Lett. 2010. V. 96. P.052511-1-3.
  29. Sbia R., Piramanayagam S.N. Patterned media towards nanobit magnetic recording: fabrication and challenges // Rec. Pat. Nanotech. 2007. V. 1. P.29-40.
  30. Kikitsu A. Prospects for bit patterned media for high-density magnetic recording // J. Magn. Mater. 2009. V. 321. P. 526-530.
  31. Wood R. et al. Perpendicular recording: the promise and the problem // J. Magn. Mater. 2001. V. 235. P. 1-16.
  32. Nolan T., Valcu B., Richter H.J. Effect of composite designs on writability and thermal stability of perpendicular recording media // IEEE Trans. Magn. 2011. V. 47. P. 63-68.
  33. Piramanayagam S.N. Perpendicular recording media for hard disk drives // J. Appl. Phys. 2007. V. 102. P. 011301-1-22
  34. Selvan C., Pornchai S. A spinstand study in determining the optimum shingling percentage for shingled write recording // IEEE Trans. Magn. 2013. V. 49. P. 2544-2547.
  35. Sonobe Y. et al.Thermally stable CGC perpendicular recording media with Pt-rich CoPtCr and thin Pt layers // IEEE Trans. Magn. 2002. V. 38. P. 2006-2011.
  36. Sonobe Y.et al. Coupled granular/continuous perpendicular recording media with soft magnetic underlayer // J. Appl. Phys. 2002.V. 91. P.8055-8057.
  37. Wang H. et al. Spontaneously-formed FePt graded granular media with a large gain factor // IEEE Magn. Lett. 2012. V. 3. P. 450014-1-4.
  38. Ma B. et al. Structural and magnetic properties of a core-shell type L10 FePt/Fe exchange coupled nanocomposite with tilted easy axis // J. Appl. Phys. 2011. V. 109. P. 083907-1-5.
  39. Goll D., Macke S. Thermal stability of ledge-type L10-FePt/Fe exchange spring nanocomposites for ultrahigh recording density//Appl. Phys. Lett. 2008. V.93. P.152512-1-3.
  40. Ma B. et al. Core-shell exchange coupled nanocomposites for ultrahigh recording density // IEEE Trans. Magn. 2010. V. 46. P. 2345-2349.
  41. Hauet T. et al. Role of reversal incoherency in reducing switching field and switching field distribution of exchange couple composite bit patterned media // Appl. Phys. Lett. 2009. V. 95. P.262504-1-3.
  42. Tudosa I. et al. Thermal stability of patterned Co/Pd nanodot arrays // Appl. Phys. Lett. 2012. V.100. P.102401-1-4.
  43. Elbagi N. et al. Role of dipolar interactions on the thermal stability of high-density bit-patterned media// IEEE Magn. Lett. 2012. V. 3. P.4500204-1-4.
  44. Krone P. et al. Investigation of the magnetization reversal of a magnetic dot array of Co/Pt multilayers // J. Nanopart. Res. 2011. V. 13. P.5587-5593.
  45. Bertram H.N., Longsfield B. Energy barriers in composite media grains // IEEE Trans. Magn. 2007. V.43. P.2145-2147.
  46. Cheng J.Y. et al. Magnetic nanostructures from block copolymer lithography: hysteresis, thermal stability and magnetoresistence // Phys. Rev.B. 2004. V. 70. P. 064417-9.
  47. Li X. et al. Preparation and properties of perpendicular CoPt magnetic nanodot arrays patterned by nanosphere lithography // J. Vac. Sci. Technol. A. 2009. V.27. P.1062-1064.
  48. Wood R. Future hard disk drive systems // J. Magn. Mater. 2009.V. 321. P. 555-561.
  49. Dutson J. et al. Magnetisation reversal in media with perpendicular anisotropy // J. Magn. Matter. 2006. V. 304. P. 51-55.
  50. Wu A. et al. HAMR Areal Density Demonstration of 1+ Tbpsi on Spin-stand // IEEE Trans. Magn. 2013, V. 49. P. 779-782.
  51. Xu B.X. et al. Thermal issues and their effects on heat-assisted magnetic recording system // J. Appl. Phys. 2012.V. 111.  P. 07B701-1-4.
  52. Abes M. et al. Magnetic switching field distribution of patterned CoPd dots // J. Appl. Phys. 2009. V.105.P. 113916-1-8.
  53. SHadrov V.G., Nemcevich L.V., Boltushkin A.V. Raspredelenie polejj peremagnichivanija i magnitnoe  povedenie strukturirovannykh sred magnitnojj zapisi // Uspekhi sovremennojj radioehlektroniki. 2015. № 2.
  54. Shiroishi Y. et al. Future options for HDD storage // IEEE Trans. Magn. 2009 V. 45. P. 3816-3822.
  55. Zhu J.G., Zhu X., Tang Y. Microwave assisted magnetic recording // IEEE Trans. 2008. V. 44. P. 125-131.
  56. Okamoto S. et al. Microwave assisted switching mechanism and its stable switching limit // J. Appl. Phys. 2010. V. 107.  P. 123914-1-3.
  57. Zou Y.Y. et al. Tilted media in a perpendicular recording system for high areal density recording // Appl. Phys. Lett. 2003. V. 82. P. 2473-2475.
  58. Gao K.Z., Bertram H. Transition jitter estimates in tilted and conventional perpendicular recording media at 1 Tbit/in2 // IEEE Trans. Magn. 2003.V. 39. P. 704-709.
  59. Wang J.P. et al. Approaches to tilted magnetic recording for extremely high areal density // IEEE Trans. Magn. 2003. V. 39. P. 1930-1935.
  60. Wiedwald U. et al. Tuning the properties of magnetic thin films by interaction with periodic nanostructures // Beilstein J. Nanotech. 2012. V. 3. P. 831-842.
  61. Laughlin D.E. et al. Fabrication, microstructure, magnetic and recording properties of percolated perpendicular media // IEEE Trans Magn. 2007. V. 43. P. 693-697.
  62. Wachenschwanz D. et al. Design of manufacturable discrete track recording medium // IEEE Trans. Magn. 2005. V. 41. P. 670-675.
  63. Evans R.F.L. et al. On beating the superparamagnetic limit with exchange bias // EPL. 2009. V. 88. P. 57004-1-4.
  64. Oustler T.A. et al. Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet // Nature communications 2012.V.3.P.666-1-8.
  65. Richter H.J.The transition from longitudinal to perpendicular recording // J. Phys. D: Appl. Phys. 2007. V. 40. P. R149-R164.
  66. SHadrov V.G.Mezhkristallitnoe magnitnoe vzaimodejjstvie i svojjstva magnitnykh nanostruktur. Minsk: Izd-voBGU. 2010.
  67. Evans R.F.L. et al. Thermally induced error: Density limit for magnetic data storage // Appl. Phys. Lett. 2012.V. 100. P. 102402-1-3.
  68. Richter H.J. et al. The thermodynamic limits of magnetic recording // J. Appl. Phys. 2012.V. 111. P. 033909-1-8.
  69. Suess D., Schrefl T. Breaking the thermally induced write error in heat assisted recording by using low and high Tc materials // Appl. Phys. Lett. 2013. V. 102. P. 162405-1-4.
  70. Marchon B.The head-disk interface roadmap to an areal density of 4 Tbits/ in2 // Adv. Trib. 2013. P. 1-8.
  71. Evans R.F.L. et al. Atomistic spin model simulation of magnetic nanomaterials // J. Phys.: Cond. Mat. 2014. V. 26. P. 103202-1-23.