350 руб
Журнал «Вопросы биологической, медицинской и фармацевтической химии» №2 за 2015 г.
Статья в номере:
МикроРНК - новые перспективные биомаркеры опухолей и мишени химиотерапии. Часть 1. История открытия, биогенез и использование. Роль микроРНК в качестве биомаркеров
Авторы:
А.Н. Ширшова - науч. сотрудник, лаборатория фармакогеномики, Институт химической биологии и фундаментальной медицины СО РАН (г. Новосибирск). E-mail: arina.shirshova@gmail.com М.А. Сметанина - к.б.н., науч. сотрудник, лаборатория фармакогеномики, Институт химической биологии и фундаментальной медицины СО РАН (г. Новосибирск) В.Н. Аушев - к.м.н., ст. науч. сотрудник, лаборатория регуляции клеточных и вирусных онкогенов НИИ канцерогенеза, Российский онкологический научный центр им. Н.Н.Блохина (Москва) М.Л. Филипенко - к.б.н., зав. лабораторией фармакогеномики, Институт химической биологии и фундаментальной медицины СО РАН (г. Новосибирск) Н.Е. Кушлинский - д.м.н., профессор, чл.-корр. РАН, зав. лабораторией клинической биохимии, Российский онкологический научный центр им. Н.Н.Блохина (Москва)
Аннотация:
Представлены основные этапы истории открытия, описаны биогенез и роль микроРНК в норме, в инициации, прогрессии, диагностике и терапии злокачественных опухолей.
Страницы: 33-43
Список источников

  1. Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 // Cell. 1993. V. 75. № 5. P. 843 - 854.
  2. Singer M.F., Jones O.W., Nirenberg M.W. The effect of secondary structure of the template activity of polyribonucleotides // Proc. Natl. Acad. Sci. USA. 1963. V. 49. P. 392 - 399.
  3. Chalfie M., Horvitz H.R., Sulston J.E. Mutations that lead to reiterations in the cell lineages of C.elegans // Cell. 1981. V. 24. № 1. P. 59 - 69.
  4. Ambros V., Horvitz H.R. Heterochronic mutants of the nematode C. aeorhabditis elegans // Science. 1984. V. 226. № 4673. P. 409 ? 416.
  5. Ambros V., Horvitz H.R. The lin-14 locus of Caenorhabditis elegans controls the time of expression of specific post-embryonic events // Genes Dev. 1987. V. 1. № 1. P. 398 - 414.
  6. Ambros V. A hierarchy of regulatory genes controls a larva to adult developmental switch in C. elegans // Cell. 1989. V. 57. № 1. P. 49 ? 57.
  7. Wightman B., Ha I., Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans // Cell. 1993. V. 75. № 5. P. 855 ? 862.
  8. Fire A.F., Xu S.Q., Montgomery M.K. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans // Nature. 1998. V. 391. № 6669. P. 806 - 811.
  9. Montgomery M.K., Fire A. Double-stranded RNA as a mediator in sequence-specific genetic silencing and co-suppression // Trends Genet. 1998. V. 14. № 7. P. 255 - 258.
  10. Reinhart B.J., Slack F.J., Basson M. et al. The 21-nuc­leotidelet-7 RNA regulates developmental timing in Caenorhabditis elegans // Nature. 2000. V. 403. № 6772. P. 901 - 906.
  11. Pasquinelli A.E., Reinhart B.J., Slack F. et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA // Nature. 2000. V. 408. № 6808. P. 86 - 89.
  12. Zamore P.D., Tuschl T., Sharp P.A., Bartel D.P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals // Cell. 2000. V. 101. № 1. P. 25 - 33.
  13. Grishok A., Pasquinelli A.E., Conte D. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing // Cell. 2001. V. 106. № 1. P. 23 - 34.
  14. Lee R.C., Ambros V. An extensive class of small RNAs in Caenorhabditis elegans // Science. 2001. V. 294. № 5543. P. 862 ? 894.
  15. Lau N.C., Lim L.P., Weinstein E.G., Bartel D.P. An abundant class of tiny RNAs with probably regulatory roles in Caenorhabditis elegans // Science. 2001. V. 294. № 5543. P. 858 - 862.
  16. Lagos-Quintana M., Rauhut R., Lendeckel W., Tuschl T. Identification of novel genes coding for small expressed RNAs // Science. 2001. V. 294. № 5543. P. 853 - 858.
  17. Calin G.A., Dumitru C.D., Shimizu M. et al. Frequent deletion sand down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia // Proc. Natl. Acad. Sci. USA. 2002. V. 99. № 24. P. 15524 - 15529.
  18. Calin G.A., Sevignani C., Dumitru C.D. et al. Human microRNA genes a refrequently located at fragile sites and genomic regions involved in cancers // Proc. Natl. Acad. Sci. USA. 2004. V. 101. № 9. P. 2999 - 3004.
  19. Esquela-Kerscher A., Slack F.J. Oncomirs-microRNA with a role in cancer // Nat. Rev. Cancer. 2006. V. 6. № 4. P. 259 - 269.
  20. Tanzer A., Stadler P.F. Molecular evolution of a microRNA cluster // J. Mol. Biol. 2004. V. 339. № 2. P. 327 - 335.
  21. He L., Thomson J.M., Hemann M.T. et al. A microRNA polycistron as a potential human oncogene // Nature. 2005. V. 435. № 7043. P. 828 ? 833.
  22. Takamizawa J., Konishi H., Yanagisawa K. et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival // Cancer Res. 2004. V. 64. № 11. P. 3753 ? 3756.
  23. Ambors V. MicroRNAs and developmental timing // Curr. Opin. Genet. Dev. 2011. V. 21. № 4. P. 511 - 517.
  24. Krek A., Grun D., Poy M.N. et al. Combinatorial microRNA target predictions // Nat. Genet. 2005. V. 37. № 5. P. 495 - 500.
  25. Lewis B.P., Burge C.B., Bartel D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets // Cell. 2005. V. 120. № 1. P. 15 - 20.
  26. Martinez N.J., Ow M.C., Reece-Hoyes J.S. et al. Genome-scale spatiotemporal analysis of Caenorhabditis elegans microRNA promoter activity // Genome Res. 2008. V. 18. № 12. P. 2005 - 2015.
  27. Rodriguez A., Griffiths-Jones S., Ashurst J.L., Bradley A. Identification of mammalian microRNA host genes and transcription units // Genome Res. 2004. V. 14. № 10A. P. 1902 - 1910.
  28. Cai X., Hagedorn C.H., Cullen B.R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs // RNA. 2004. V. 10. № 12. P. 1957 - 1966.
  29. Bartel D.P. MicroRNAs: target recognition and regulatory functions // Cell. 2009. V. 136. № 2. P. 215 - 233.
  30. Lee Y., Kim M., Han J. et al. MicroRNA genes are transcribed by RNA polymerase II // EMBO J. 2004. V. 23. № 20. P. 4051 - 4060.
  31. Faller M., Guo F. MicroRNA biogenesis: there-s more than one way to skin a cat // Biochim. Biophys. Acta. 2008. V. 1779. № 11. P. 663 - 667.
  32. Cai X., Hagedorn C.H., Cullen B.R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNA // RNA. 2004. V. 10. № 12. P. 1957 ? 1966.
  33. Ameres S.L., Zamore P.D. Divers if ying microRNAs equence and function // Nat. Rev. Mol. Cell Biol. 2013. V. 14. № 8. P. 475 - 488.
  34. Mourelatos Z., Dostie J., Paushkin S. et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs // Genes Dev. 2002. V. 16. № 6. P. 720 - 728.
  35. Han J., Lee Y., Yeom K.H. et al. The Drosha-DGCR8 complex in primary microRNA processing // Genes Dev. 2004. V. 18. № 24. P. 3016 - 3027.
  36. Gregory R.I., Chendrimada T.P., Shiekhattar R. MicroRNA biogenesis: isolation and characterization of the microprocessor complex // Methods Mol. Biol. 2006. V. 342. P. 33 - 47.
  37. Lee Y., Ahn C., Han J. et al. The nuclear RNase III Drosha initiates microRNA processing // Nature. 2003. V. 425. № 6956. P. 415 - 419.
  38. Han J., Lee Y., Yeom K.H. et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex // Cell. 2006. V. 125. № 5. P. 887 - 901.
  39. Park W., Li J., Song R. et al. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, actin microRNA metabolismin Arabidopsis thaliana // Curr. Biol. 2002. V. 12. № 17. P. 1484 - 1495.
  40. Reinhart B., Weinstein E., Rhoades M. et al. MicroRNAs in plants // Genes Dev. 2002. V. 16. № 13. P. 1616 - 1626.
  41. Basyuk E., Suavet F., Doglio A. et al. Human let-7 stem-loop precursors harbor features of RNase III cleavage products // Nucleic Acids Res. 2003. V. 31. № 22. P. 6593 - 6597.
  42. Kim V.N. MicroRNA precursors in motion: exportin-5 mediates their nuclear export. // Trends Cell Biol. 2004. V. 14. № 4. P. 156 - 159.
  43. Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function // Cell. 2004. V. 116. № 2. P. 281 - 297.
  44. Zhang H., Kolb F.A., Jaskiewicz L. et al. Single processing center models for human Dicer and bacterial RNase III // Cell. 2004. V. 118. № 11. P. 57 - 68.
  45. Hutvagner G., Simard M.J. Argonaute proteins: key players in RNA silencing // Nat. Rev. Mol. Cell Biol. 2008. V. 9. № 1. P. 22 - 32.
  46. Preall J.B., He Z., Gorra J.M., Sontheimer E.J. Short interfering RNA strand selection is independent of dsRNA processing polarity during RNAi in Drosophila // Curr. Biol. 2006. V. 16. № 5. P. 530 - 535.
  47. Westholm J.O., Lai E.C. Mirtrons - microRNA biogenesis via splicing // Biochhimie. 2011. V. 93. № 11. P. 1897 - 1904.
  48. Hamilton A.J., Baulcombe D.C. A species of small antisenseRNA in posttranscriptional genes ilencinginplants // Science. 1999. V. 286. № 5441. P. 950 - 952.
  49. Elbashir S.M., Harborth J., Lendeckel W. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells // Nature. 2001. V. 411. № 6836. P. 494 - 498.
  50. Watanabe T., Totoki Y., Toyoda A. et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes // Nature. 2008. V. 453. № 7194. P. 539 - 543.
  51. Tam O.H., Aravin A.A., Stein P. et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes // Nature. 2008. V. 453. № 7194. P. 534 - 538.
  52. Gregory R.I., Chendrimada T.P., Cooch N., Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional genes ilencing // Cell. 2005. V. 123. № 4. P. 631 - 640.
  53. Maniataki E., Mourelatos Z. A human, ATP-independent, RISC assembly machine fueled bypre-микроРНК // Genes. Dev. 2005. V. 19. № 24. P. 2979 - 2990.
  54. Liu X., Jin D.Y., McManus M.T., Mourelatos Z. Precursor microRNA-programmed silencing complex assembly pathway sin mammals // Mol. Cell. 2012. V. 46. № 4. P. 507 - 517.
  55. Schnall-Levin M., Zhao Y., Perrimon N., Berger B. Conserved microRNA targeting in Drosophila is as widespread in coding regions as in 3'UTRs // Proc. Natl. Acad. Sci. USA. 2010. V. 107. № 36. P. 15751 - 15756.
  56. German M.A., Pillay M., Jeong D.H. et al. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends // Nat. Biotechnol. 2008. V. 26. № 8. P. 941 - 946.
  57. Axtell M.J., Westholm J.O., Lai E.C. Vivel a différence: biogenesis and evolution of microRNA sinplants and animals // Genome Biology. 2011. V. 12. № 4. P. 221. doi: 10.1186/gb-2011-12-4-221.
  58. Liu J., Rivas F.V., Wohlschlegel J. et al. A role for the P-body component GW182 in microRNA function // Nat. Cell Biol. 2005. V. 7. № 12. P. 1261 - 1266.
  59. Mitchell P.S., Parkin R.K., Kroh E.M. et al. Circulating microRNAs as stable blood-based markers for cancer detection // Proc. Natl. Acad. Sci. USA. 2008. V. 105. № 30. P. 10513 - 10518.
  60. Valadi H., Ekström K., Bossios A. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells // Nat. Cell Biol. 2007. V. 9. № 6. P. 654 - 659.
  61. Turchinovich A., Weiz L., Langheinz A., Burwinkel B. Characterization of extracellular circulating microRNA // Nucleic Acids Res. 2011. V. 39. № 16. P. 7223 - 7233.
  62. Wang K., Zhang Sh., Weber J. et al. Export of microRNAs and microRNA-protective protein by mammalian cells // Nucleic Acids Res. 2010. V. 38. № 20. P. 7248 - 7259.
  63. Vickers K.C., Palmisano B.T., Shoucri B.M. et al. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins // Nat. Cell Biol. 2011. V. 13. № 4. P. 423 - 33.
  64. Fabbri M., Croce C.M., Calin G.A. MicroRNAs // Cancer J. 2008. V. 14. № 1. P. 1 - 6.
  65. Diaz-Lopez A., Moreno-Bueno G., Cano A. Role of microRNA in epithelial to mesenchymal transition and metastasis and clinical perspectives // Cancer Manag. Res. 2014. V. 6. P. 205 - 216.
  66. Lu J., Getz G., Miska E.A. et al. MicroRNA expression profiles classify human cancers // Nature. 2005. V. 435. № 7043. P. 834 - 838.
  67. Cho W.C. Circulating microRNAs as minimally invasive biomarkers for cancer theragnosis and prognosis // Front. Genet. 2011. V. 2. P. 1 - 6.
  68. De Guire V., Robitaille R., Tétreault N. et al. Circulating miRNAs as sensitive and specific biomarkers for the diagnosis and monitoring of human diseases: promises and challenges // Clin. Biochem. 2013. V. 46. № 10 - 11. P. 846 - 860.
  69. Sandoval J., Peiró-Chova L., Pallardó F.V. et al. Epigenetic biomarkers in laboratory diagnostics: emerging approaches and opportunities // Expert. Rev. Mol. Diagn. 2013. V. 13. № 5. P. 457 - 471.
  70. Iorio M.V., Croce1 C.M. MicroRNA involvement in human cancer // Carcinogenesis. 2012. V. 33. № 6. P. 1126 - 1133.
  71. Feng R., Chen X., Yu Y. et al. miR-126 functions as a tumour suppressor in human gastric cancer // Cancer Lett. 2010. V. 298. № 1. P. 50 - 63.
  72. Otsubo T., Akiyama Y., Hashimoto Y. et al. MicroRNA-126 inhibits SOX2 expression and contributes to gastric carcinogenesis // PLoS One. 2011. V. 6. № 1. e16617.
  73. Esquela-Kerscher A., Slack F.J. Oncomirs - microRNAs with a role in cancer // Nat. Rev. Cancer. 2006. V. 6. № 4. P. 259 - 269.
  74. Chan J.A., Krichevsky A.M., Kosik K.S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells // Cancer Res. 2005. V. 65. № 14. P. 6029 - 6033.
  75. Si M.L., Zhu S., Wu H. et al. miR-21-mediated tumor growth // Oncogene. 2007. V. 26. № 19. P. 2799 - 2803.
  76. Buscaglia L.E., Li Y. Apoptosis and target genes of microRNA-21 // Chi. J. Cancer. 2011. V. 30. № 6. P. 371 - 380.
  77. Zhang Z., Li Z., Gao C. et al. miR-21 plays a pivotal role in gastric cancer pathogenesis and progression // Lab. Invest. 2008. V. 88. № 12. P. 1358 - 1366.
  78. Zhu L.H., Liu T., Tang H. et al. MicroRNA-23a promotes the growth of gastric adenocarcinoma cell line MGC803 and down regulates interleukin-6 receptor // FEBS J. 2010. V. 277. № 18. P. 3726 - 3734.
  79. Kim Y.K., Yu J., Han T.S. et al. Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clustersin gastric cancer // Nucleic Acids Res. 2009. V. 37. № 5. P. 1672 - 1681.
  80. Zhang Y., Fan K.J., Sun Q. et al. Functional screening for микроРНКs targeting Smad4 identified miR-199a as a negative regulator of TGF-β signalling pathway // Nucleic Acids Res. 2012. V. 40. № 18. P. 9286 - 9297.
  81. Korpal M., Lee E.S., Hu G., Kang Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2 // J. Biol. Chem. 2008. V. 283. № 22. P. 14910 - 14914.
  82. He X.P., Shao Y., Li X.L. et al. Downregulation of miR-101 in gastric cancer correlates with cyclooxygenase-2 overexpression and tumor growth // FEBS J. 2012. V. 279. № 22. P. 4201 - 412.
  83. Carvalho J., vanGrieken N.C., Pereira P.M. et al. Lack of microRNA-101 causes E-cadherin functional deregulation through EZH2 up-regulation in intestinal gastric cancer // J. Pathol. 2012. V. 228. № 1. P. 31 - 44.
  84. Nishida N., Mimori K., Fabbri M. et al. MicroRNA-125a-5p is an independent prognostic factor in gastric cancer and inhibits the proliferation of human gastric cancer cells in combination with trastuzumab // Clin. Cancer Res. 2011. V. 17. № 9. P. 2725 - 2733.
  85. Tsukamoto Y., Nakada C., Noguchi T. et al. MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3zeta // Cancer Res. 2010. V. 70. № 6. P. 2339 - 2349.
  86. Hashimoto Y., Akiyama Y., Otsubo T. et al. Involvement of epigenetically silenced microRNA-181c in gastric carcinogenesis // Carcinogenesis. 2010. V. 31. № 5.P. 777 - 784.
  87. Tsai K.W., Wu C.W., Hu L.Y. et al. Epigenetic regulation of miR-34b and miR-129 expression in gastric cancer // Int. J. Cancer. 2011. V. 129. № 11. P. 2600 - 2610.
  88. Ji Q., Hao X., Meng Y. et al. Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres // BMC Cancer. 2008. V. 8. P. 266 - 278.
  89. Xiao B., Guo J., Miao Y. et al. Detection of miR-106a in gastric carcinoma and its clinical significance // Clin. Chim. Acta. 2009. V. 400. № 1-2. P. 97 - 102.
  90. Katada T., Ishiguro H., Kuwabara Y. et al. microRNA expression profile in undifferentiated gastric cancer // Int. J. Oncol. 2009. V. 34. № 2. P. 537 - 542.
  91. Luo H., Zhang H., Zhang Z. et al. Down-regulated miR-9 and miR-433 in human gastric carcinoma // J. Exp. Clin. Cancer Res. 2009. V. 28. P. 82 - 91.
  92. Guo J., Miao Y., Xiao B. et al. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues // J. Gastroenterol. Hepatol. 2009. V. 24. № 4. P. 652 - 657.