350 rub
Journal №2 for 2015 г.
Article in number:
Micrornas - new promising tumor biological markers and targets for chemotherapy. Part 1 The history of microRNA discovery, their biogenesis and the use. The role of microRNA as a biomarker
Authors:
A.N. Shirshova - Researcher, Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk
M.A. Smetanina - Ph.D.(Biol.), Researcher, Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk
V.N. Aushev - Ph.D.(Med.), Senior Researcher, Laboratory of Oncogenes Regulation, Carcinogenesis Institute, N.N.Blokhin Russian Cancer Research Center, Moscow
M.L. Filipenko - Ph.D.(Biol.), Head of the laboratory of pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine Siberian branch of the Russian Academy of Sciences, Novosibirsk
N.E. Kushlinskii - Dr.Sc. (Med.), Professor, Head of the Clinical Biochemistry Laboratory, N.N. Blokhin Russian Cancer Research Center, Moscow
Abstract:
The discovery of negative regulation of gene expression by small non-coding RNAs - microRNAs - is one of the prominent events in the biology of the last fifteen years. MicroRNAs are the most important and universal regulatory molecules playing the key roles in the majority of events in eukaryotic cell. Disturbances of the mechanisms of microRNA-dependent regulation were revealed in different severe human pathologies, and primarily in oncologic diseases. Main phases of the history of micro RNA discovery, their biogenesis and role in normal conditions, and in malignant tumors initiation, progression, diagnostics and therapy are presented in this review.
Pages: 33-43
References

  1. Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 // Cell. 1993. V. 75. № 5. P. 843 - 854.
  2. Singer M.F., Jones O.W., Nirenberg M.W. The effect of secondary structure of the template activity of polyribonucleotides // Proc. Natl. Acad. Sci. USA. 1963. V. 49. P. 392 - 399.
  3. Chalfie M., Horvitz H.R., Sulston J.E. Mutations that lead to reiterations in the cell lineages of C.elegans // Cell. 1981. V. 24. № 1. P. 59 - 69.
  4. Ambros V., Horvitz H.R. Heterochronic mutants of the nematode C. aeorhabditis elegans // Science. 1984. V. 226. № 4673. P. 409 - 416.
  5. Ambros V., Horvitz H.R. The lin-14 locus of Caenorhabditis elegans controls the time of expression of specific post-embryonic events // Genes Dev. 1987. V. 1. № 1. P. 398 - 414.
  6. Ambros V. A hierarchy of regulatory genes controls a larva to adult developmental switch in C. elegans // Cell. 1989. V. 57. № 1. P. 49 - 57.
  7. Wightman B., Ha I., Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans // Cell. 1993. V. 75. № 5. P. 855 - 862.
  8. Fire A.F., Xu S.Q., Montgomery M.K. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans // Nature. 1998. V. 391. № 6669. P. 806 - 811.
  9. Montgomery M.K., Fire A. Double-stranded RNA as a mediator in sequence-specific genetic silencing and co-suppression // Trends Genet. 1998. V. 14. № 7. P. 255 - 258.
  10. Reinhart B.J., Slack F.J., Basson M. et al. The 21-nuc­leotidelet-7 RNA regulates developmental timing in Caenorhabditis elegans // Nature. 2000. V. 403. № 6772. P. 901 - 906.
  11. Pasquinelli A.E., Reinhart B.J., Slack F. et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA // Nature. 2000. V. 408. № 6808. P. 86 - 89.
  12. Zamore P.D., Tuschl T., Sharp P.A., Bartel D.P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals // Cell. 2000. V. 101. № 1. P. 25 - 33.
  13. Grishok A., Pasquinelli A.E., Conte D. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing // Cell. 2001. V. 106. № 1. P. 23 - 34.
  14. Lee R.C., Ambros V. An extensive class of small RNAs in Caenorhabditis elegans // Science. 2001. V. 294. № 5543. P. 862 - 894.
  15. Lau N.C., Lim L.P., Weinstein E.G., Bartel D.P. An abundant class of tiny RNAs with probably regulatory roles in Caenorhabditis elegans // Science. 2001. V. 294. № 5543. P. 858 - 862.
  16. Lagos-Quintana M., Rauhut R., Lendeckel W., Tuschl T. Identification of novel genes coding for small expressed RNAs // Science. 2001. V. 294. № 5543. P. 853 - 858.
  17. Calin G.A., Dumitru C.D., Shimizu M. et al. Frequent deletion sand down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia // Proc. Natl. Acad. Sci. USA. 2002. V. 99. № 24. P. 15524 - 15529.
  18. Calin G.A., Sevignani C., Dumitru C.D. et al. Human microRNA genes a refrequently located at fragile sites and genomic regions involved in cancers // Proc. Natl. Acad. Sci. USA. 2004. V. 101. № 9. P. 2999 - 3004.
  19. Esquela-Kerscher A., Slack F.J. Oncomirs-microRNA with a role in cancer // Nat. Rev. Cancer. 2006. V. 6. № 4. P. 259 - 269.
  20. Tanzer A., Stadler P.F. Molecular evolution of a microRNA cluster // J. Mol. Biol. 2004. V. 339. № 2. P. 327 - 335.
  21. He L., Thomson J.M., Hemann M.T. et al. A microRNA polycistron as a potential human oncogene // Nature. 2005. V. 435. № 7043. P. 828 - 833.
  22. Takamizawa J., Konishi H., Yanagisawa K. et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival // Cancer Res. 2004. V. 64. № 11. P. 3753 - 3756.
  23. Ambors V. MicroRNAs and developmental timing // Curr. Opin. Genet. Dev. 2011. V. 21. № 4. P. 511 - 517.
  24. Krek A., Grun D., Poy M.N. et al. Combinatorial microRNA target predictions // Nat. Genet. 2005. V. 37. № 5. P. 495 - 500.
  25. Lewis B.P., Burge C.B., Bartel D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets // Cell. 2005. V. 120. № 1. P. 15 - 20.
  26. Martinez N.J., Ow M.C., Reece-Hoyes J.S. et al. Genome-scale spatiotemporal analysis of Caenorhabditis elegans microRNA promoter activity // Genome Res. 2008. V. 18. № 12. P. 2005 - 2015.
  27. Rodriguez A., Griffiths-Jones S., Ashurst J.L., Bradley A. Identification of mammalian microRNA host genes and transcription units // Genome Res. 2004. V. 14. № 10A. P. 1902 - 1910.
  28. Cai X., Hagedorn C.H., Cullen B.R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs // RNA. 2004. V. 10. № 12. P. 1957 - 1966.
  29. Bartel D.P. MicroRNAs: target recognition and regulatory functions // Cell. 2009. V. 136. № 2. P. 215 - 233.
  30. Lee Y., Kim M., Han J. et al. MicroRNA genes are transcribed by RNA polymerase II // EMBO J. 2004. V. 23. № 20. P. 4051 - 4060.
  31. Faller M., Guo F. MicroRNA biogenesis: there-s more than one way to skin a cat // Biochim. Biophys. Acta. 2008. V. 1779. № 11. P. 663 - 667.
  32. Cai X., Hagedorn C.H., Cullen B.R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNA // RNA. 2004. V. 10. № 12. P. 1957 - 1966.
  33. Ameres S.L., Zamore P.D. Divers if ying microRNAs equence and function // Nat. Rev. Mol. Cell Biol. 2013. V. 14. № 8. P. 475 ? 488.
  34. Mourelatos Z., Dostie J., Paushkin S. et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs // Genes Dev. 2002. V. 16. № 6. P. 720 - 728.
  35. Han J., Lee Y., Yeom K.H. et al. The Drosha-DGCR8 complex in primary microRNA processing // Genes Dev. 2004. V. 18. № 24. P. 3016 - 3027.
  36. Gregory R.I., Chendrimada T.P., Shiekhattar R. MicroRNA biogenesis: isolation and characterization of the microprocessor complex // Methods Mol. Biol. 2006. V. 342. P. 33 - 47.
  37. Lee Y., Ahn C., Han J. et al. The nuclear RNase III Drosha initiates microRNA processing // Nature. 2003. V. 425. № 6956. P. 415 ? 419.
  38. Han J., Lee Y., Yeom K.H. et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex // Cell. 2006. V. 125. № 5. P. 887 - 901.
  39. Park W., Li J., Song R. et al. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, actin microRNA metabolismin Arabidopsis thaliana // Curr. Biol. 2002. V. 12. № 17. P. 1484 - 1495.
  40. Reinhart B., Weinstein E., Rhoades M. et al. MicroRNAs in plants // Genes Dev. 2002. V. 16. № 13. P. 1616 - 1626.
  41. Basyuk E., Suavet F., Doglio A. et al. Human let-7 stem-loop precursors harbor features of RNase III cleavage products // Nucleic Acids Res. 2003. V. 31. № 22. P. 6593 - 6597.
  42. Kim V.N. MicroRNA precursors in motion: exportin-5 mediates their nuclear export. // Trends Cell Biol. 2004. V. 14. № 4. P. 156 ? 159.
  43. Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function // Cell. 2004. V. 116. № 2. P. 281 - 297.
  44. Zhang H., Kolb F.A., Jaskiewicz L. et al. Single processing center models for human Dicer and bacterial RNase III // Cell. 2004. V. 118. № 11. P. 57 - 68.
  45. Hutvagner G., Simard M.J. Argonaute proteins: key players in RNA silencing // Nat. Rev. Mol. Cell Biol. 2008. V. 9. № 1. P. 22 ? 32.
  46. Preall J.B., He Z., Gorra J.M., Sontheimer E.J. Short interfering RNA strand selection is independent of dsRNA processing polarity during RNAi in Drosophila // Curr. Biol. 2006. V. 16. № 5. P. 530 - 535.
  47. Westholm J.O., Lai E.C. Mirtrons - microRNA biogenesis via splicing // Biochhimie. 2011. V. 93. № 11. P. 1897 - 1904.
  48. Hamilton A.J., Baulcombe D.C. A species of small antisenseRNA in posttranscriptional genes ilencinginplants // Science. 1999. V. 286. № 5441. P. 950 - 952.
  49. Elbashir S.M., Harborth J., Lendeckel W. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells // Nature. 2001. V. 411. № 6836. P. 494 - 498.
  50. Watanabe T., Totoki Y., Toyoda A. et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes // Nature. 2008. V. 453. № 7194. P. 539 - 543.
  51. Tam O.H., Aravin A.A., Stein P. et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes // Nature. 2008. V. 453. № 7194. P. 534 - 538.
  52. Gregory R.I., Chendrimada T.P., Cooch N., Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional genes ilencing // Cell. 2005. V. 123. № 4. P. 631 - 640.
  53. Maniataki E., Mourelatos Z. A human, ATP-independent, RISC assembly machine fueled bypre-микроРНК // Genes. Dev. 2005. V. 19. № 24. P. 2979 - 2990.
  54. Liu X., Jin D.Y., McManus M.T., Mourelatos Z. Precursor microRNA-programmed silencing complex assembly pathway sin mammals // Mol. Cell. 2012. V. 46. № 4. P. 507 - 517.
  55. Schnall-Levin M., Zhao Y., Perrimon N., Berger B. Conserved microRNA targeting in Drosophila is as widespread in coding regions as in 3'UTRs // Proc. Natl. Acad. Sci. USA. 2010. V. 107. № 36. P. 15751 ? 15756.
  56. German M.A., Pillay M., Jeong D.H. et al. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends // Nat. Biotechnol. 2008. V. 26. № 8. P. 941 - 946.
  57. Axtell M.J., Westholm J.O., Lai E.C. Vivel a différence: biogenesis and evolution of microRNA sinplants and animals // Genome Biology. 2011. V. 12. № 4. P. 221. doi: 10.1186/gb-2011-12-4-221.
  58. Liu J., Rivas F.V., Wohlschlegel J. et al. A role for the P-body component GW182 in microRNA function // Nat. Cell Biol. 2005. V. 7. № 12. P. 1261 - 1266.
  59. Mitchell P.S., Parkin R.K., Kroh E.M. et al. Circulating microRNAs as stable blood-based markers for cancer detection // Proc. Natl. Acad. Sci. USA. 2008. V. 105. № 30. P. 10513 - 10518.
  60. Valadi H., Ekström K., Bossios A. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells // Nat. Cell Biol. 2007. V. 9. № 6. P. 654 ? 659.
  61. Turchinovich A., Weiz L., Langheinz A., Burwinkel B. Characterization of extracellular circulating microRNA // Nucleic Acids Res. 2011. V. 39. № 16. P. 7223 - 7233.
  62. Wang K., Zhang Sh., Weber J. et al. Export of microRNAs and microRNA-protective protein by mammalian cells // Nucleic Acids Res. 2010. V. 38. № 20. P. 7248 - 7259.
  63. Vickers K.C., Palmisano B.T., Shoucri B.M. et al. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins // Nat. Cell Biol. 2011. V. 13. № 4. P. 423 - 33.
  64. Fabbri M., Croce C.M., Calin G.A. MicroRNAs // Cancer J. 2008. V. 14. № 1. P. 1 - 6.
  65. Diaz-Lopez A., Moreno-Bueno G., Cano A. Role of microRNA in epithelial to mesenchymal transition and metastasis and clinical perspectives // Cancer Manag. Res. 2014. V. 6. P. 205 - 216.
  66. Lu J., Getz G., Miska E.A. et al. MicroRNA expression profiles classify human cancers // Nature. 2005. V. 435. № 7043. P. 834 - 838.
  67. Cho W.C. Circulating microRNAs as minimally invasive biomarkers for cancer theragnosis and prognosis // Front. Genet. 2011. V. 2. P. 1 - 6.
  68. De Guire V., Robitaille R., Tétreault N. et al. Circulating miRNAs as sensitive and specific biomarkers for the diagnosis and monitoring of human diseases: promises and challenges // Clin. Biochem. 2013. V. 46. № 10 - 11. P. 846 - 860.
  69. Sandoval J., Peiró-Chova L., Pallardó F.V. et al. Epigenetic biomarkers in laboratory diagnostics: emerging approaches and opportunities // Expert. Rev. Mol. Diagn. 2013. V. 13. № 5. P. 457 - 471.
  70. Iorio M.V., Croce1 C.M. MicroRNA involvement in human cancer // Carcinogenesis. 2012. V. 33. № 6. P. 1126 - 1133.
  71. Feng R., Chen X., Yu Y. et al. miR-126 functions as a tumour suppressor in human gastric cancer // Cancer Lett. 2010. V. 298. № 1. P. 50 - 63.
  72. Otsubo T., Akiyama Y., Hashimoto Y. et al. MicroRNA-126 inhibits SOX2 expression and contributes to gastric carcinogenesis // PLoS One. 2011. V. 6. № 1. e16617.
  73. Esquela-Kerscher A., Slack F.J. Oncomirs - microRNAs with a role in cancer // Nat. Rev. Cancer. 2006. V. 6. № 4. P. 259 - 269.
  74. Chan J.A., Krichevsky A.M., Kosik K.S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells // Cancer Res. 2005. V. 65. № 14. P. 6029 - 6033.
  75. Si M.L., Zhu S., Wu H. et al. miR-21-mediated tumor growth // Oncogene. 2007. V. 26. № 19. P. 2799 - 2803.
  76. Buscaglia L.E., Li Y. Apoptosis and target genes of microRNA-21 // Chi. J. Cancer. 2011. V. 30. № 6. P. 371 - 380.
  77. Zhang Z., Li Z., Gao C. et al. miR-21 plays a pivotal role in gastric cancer pathogenesis and progression // Lab. Invest. 2008. V. 88. № 12. P. 1358 - 1366.
  78. Zhu L.H., Liu T., Tang H. et al. MicroRNA-23a promotes the growth of gastric adenocarcinoma cell line MGC803 and down regulates interleukin-6 receptor // FEBS J. 2010. V. 277. № 18. P. 3726 - 3734.
  79. Kim Y.K., Yu J., Han T.S. et al. Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clustersin gastric cancer // Nucleic Acids Res. 2009. V. 37. № 5. P. 1672 ? 1681.
  80. Zhang Y., Fan K.J., Sun Q. et al. Functional screening for микроРНКs targeting Smad4 identified miR-199a as a negative regulator of TGF-β signalling pathway // Nucleic Acids Res. 2012. V. 40. № 18. P. 9286 ? 9297.
  81. Korpal M., Lee E.S., Hu G., Kang Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2 // J. Biol. Chem. 2008. V. 283. № 22. P. 14910 - 14914.
  82. He X.P., Shao Y., Li X.L. et al. Downregulation of miR-101 in gastric cancer correlates with cyclooxygenase-2 overexpression and tumor growth // FEBS J. 2012. V. 279. № 22. P. 4201 - 412.
  83. Carvalho J., vanGrieken N.C., Pereira P.M. et al. Lack of microRNA-101 causes E-cadherin functional deregulation through EZH2 up-regulation in intestinal gastric cancer // J. Pathol. 2012. V. 228. № 1. P. 31 - 44.
  84. Nishida N., Mimori K., Fabbri M. et al. MicroRNA-125a-5p is an independent prognostic factor in gastric cancer and inhibits the proliferation of human gastric cancer cells in combination with trastuzumab // Clin. Cancer Res. 2011. V. 17. № 9. P. 2725 - 2733.
  85. Tsukamoto Y., Nakada C., Noguchi T. et al. MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3zeta // Cancer Res. 2010. V. 70. № 6. P. 2339 ? 2349.
  86. Hashimoto Y., Akiyama Y., Otsubo T. et al. Involvement of epigenetically silenced microRNA-181c in gastric carcinogenesis // Carcinogenesis. 2010. V. 31. № 5. P. 777 - 784.
  87. Tsai K.W., Wu C.W., Hu L.Y. et al. Epigenetic regulation of miR-34b and miR-129 expression in gastric cancer // Int. J. Cancer. 2011. V. 129. № 11. P. 2600 - 2610.
  88. Ji Q., Hao X., Meng Y. et al. Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres // BMC Cancer. 2008. V. 8. P. 266 - 278.
  89. Xiao B., Guo J., Miao Y. et al. Detection of miR-106a in gastric carcinoma and its clinical significance // Clin. Chim. Acta. 2009. V. 400. № 1-2. P. 97 - 102.
  90. Katada T., Ishiguro H., Kuwabara Y. et al. microRNA expression profile in undifferentiated gastric cancer // Int. J. Oncol. 2009. V. 34. № 2. P. 537 - 542.
  91. Luo H., Zhang H., Zhang Z. et al. Down-regulated miR-9 and miR-433 in human gastric carcinoma // J. Exp. Clin. Cancer Res. 2009. V. 28. P. 82 - 91.
  92. Guo J., Miao Y., Xiao B. et al. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues // J. Gastroenterol. Hepatol. 2009. V. 24. № 4. P. 652 - 657.