350 руб
Журнал «Вопросы биологической, медицинской и фармацевтической химии» №6 за 2013 г.
Статья в номере:
Разработка лекарственных средств на основе полимеров молочной и гликолевой кислот и их использование для лечения
Авторы:
А.В. Семаков - студент 5-го курса, кафедра биоорганической химии, биологический факультет, Московский государственный университет им. М.В. Ломоносова
Аннотация:
Дано краткое описание достижений в системах усовершенствованной доставки лекарств, основанных на PLA/PLGA. Макроформы нашли применение при необходимости длительного релиза лекарств и удержания их концентрации в терапевтическом коридоре, наноформы - в лечении неоплазм, туберкулеза, мозговых расстройств.
Страницы: 30-34
Список источников

  1. N. Kamaly et. al. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation // Chem. Soc. Rev. 2012. V. 41. P. 2971-3010.
  2. Shuwisitkul D. Biodegradable implants with different drug release profiles. Diss. Dr. rer. nat. 2011. Berlin. 160 p.
  3. Yi Shi & Luk Chiu Li Current advances in sustained-release systems for parenteral drug delivery // Expert Opin. Drug Deliv.2005. V. 2. № 6. Р. 1039-1058.
  4. Farokhzad O.C., Langer R. Nanomedicine: Developing smarter therapeutic and diagnostic modalities // Advanced Drug Delivery Reviews 2006. V. 58. P. 1456-1459.
  5. Danhier F. et al. PLGA-based nanoparticles: An overview of biomedical applications // Journal of Controlled Release. 2012. V. 161. P. 505-522.
  6. G.J. Prasad et al. PLGA-based nanoparticles: An overview of biomedical applications // IRIP. 2013. V. 4 (2). P. 17-19.
  7. Shi J. et al. Differentially Charged Hollow Core/Shell Lipid-Polymer-Lipid Hybrid Nanoparticles for Small Interfering RNA Delivery // Angew. Chem. Int. Ed. 2011. V. 50. P. 7027 - 7031.
  8. Yin H. et al. Physicochemical Characteristics of pH-Sensitive Poly(L-Histidine)-b-Poly(Ethylene Glycol)/Poly(L-Lactide)-b-Poly(Ethylene Glycol) Mixed Micelles // J. Control. Release. 2008. V. 126(2). P. 130-138.
  9. Rao K.S. TAT-conjugated nanoparticles for the CNS delivery of anti-HIV drugs // Biomaterials. 2008. V. 29. № 33. P. 4429-4438.
  10. Kulkarni S.A. and Feng S. Effects of surface modification on delivery efficiency of biodegradable nanoparticles across the blood-brain barrier // Nanomedicine. 2011. V. 6(2). P. 377-394.
  11. Geldenhuys W. et al. Brain-targeted delivery of paclitaxel using glutathione-coated nanoparticles for brain cancers // Journal of Drug Targeting. 2011. V. 19(9). P. 837-845.
  12. Liu M. et al. Pharmacokinetics and Biodistribution of Surface Modification Polymeric Nanoparticles // Arch. Pharm. Res. 2008. V. 31. № 4. P. 547-554.
  13. Ranjita S., Loaye A.S., Khalil M. Present Status of Nanoparticle Research for Treatment of Tuberculosis // J. Pharm. Pharmaceut. Sci. 2011. V. 14. № 1. P. 100 - 116.
  14. Toti U.S. and al. Targeted delivery of antibiotics to intracellular chlamydial infections using PLGA nanoparticles // Biomaterials. 2011. V. 32. P. 6606-6613.
  15. Farazuddin M. and al. Efficacy of amoxicillin bearing microsphere formulation in treatment of Listeria monocytogenes infection in Swiss albino mice // Journal of Drug Targeting. 2010. V. 18. № 1. P. 45-52.
  16. Imbuluzqueta E. and al. Cellular pharmacokinetics and intracellular activity against Listeria monocytogenes and Staphylococcus aureus of chemically modified and nanoencapsulated gentamicin // J. Antimicrob. Chemother.2012. V. 67. P. 2158-2164.
  17. Lima S.C. and al. In vitro evaluation of bisnaphthalimidopropyl derivatives loaded into pegylated nanoparticles against Leishmania infantum protozoa // International Journal of Antimicrobial Agents.2012. V. 39. Р. 424? 430.