350 rub
Journal Antennas №2 for 2025 г.
Article in number:
Verification and accuracy estimation of the source reconstruction method for antenna pattern evaluation based on near field measurements
Type of article: scientific article
DOI: https://doi.org/10.18127/j03209601-202502-08
UDC: 621.396.67
Authors:

A. A. Slobodyanenko1, V. S. Kulik2
1 Novosibirsk State Technical University (Novosibirsk, Russia)
2 Tomsk State University of Control Systems and Radioelectronics (Tomsk, Russia)

1 sepwood@gmail.com, 2 kulik_vs@mail.ru

Abstract:

Computational electromagnetism methods underlie modern methods for determining antenna radiation patterns based on electromagnetic field measurements, in particular, the method of source reconstruction. Although it is widely recognized that these methods solve physically correct equations and give physically reliable results, verifying the reliability of the source reconstruction method, i.e. verification, as well as evaluating its accuracy, remains an important and ongoing problem, especially when implemented in the real manufacturing sector. Therefore, the article considers the issue of verifying and evaluating the accuracy of the source recovery method for estimating the antenna pattern based on the results of measurements in the near field. The article describes the mathematical theory of the source recovery method. Various options for implementing the method are being considered. Based on analytical solutions to the problem of scattering spherical objects, the method has been proposed for verifying the results of determining the antenna pattern from measurements of the electromagnetic field in the near zone. Within the framework of the proposed methodology, verification has been carried out, the accuracy of the source reconstruction method for various source data has been determined, and the new functionality of this method has been clearly demonstrated.

Pages: 66-85
For citation

Slobodyanenko A.A., Kulik V.S. Verification and accuracy estimation of the source reconstruction method for antenna pattern evaluation based on near field measurements. Antennas. 2025. № 2. P. 66–85. DOI: https://doi.org/10.18127/j03209601-202502-08 (in Russian)

References
  1. IEEE Standard for system, software, and hardware verification and validation. In IEEE Std 1012-2016 (Revision of IEEE Std 1012-2012 / Incorporates IEEE Std 1012-2016/Cor1-2017). 2017. DOI: 10.1109/IEEESTD.2017.8055462.
  2. Archambeault B. Introduction to the limitations of modeling/simulation techniques. Proc. IEEE Int. Symp. Electromagn. Compat. 2008. P. 1–12.
  3. Francis M., Wittmann R. Near-field scanning measurements: theory and practice. Ch. 19 in: Balanis C. (ed.) Modern antenna handbook. NJ, USA: Wiley. 2008.
  4. Parini C., Gregson S., McCormick J., van Rensburg D.J. Theory and practice of modern antenna range measurements. London: IET. 2014.
  5. Bakhrakh L.D., Kremenetskij S.D., Kurochkin A.P. i dr. Metody izmerenij parametrov izluchayushchikh sistem v blizhnej zone. L.: Nauka. 1985. (in Russian)
  6. Álvarez, Y., Las-Heras F., Pino M.R., Sarkar T.K. An improved super-resolution source reconstruction method. IEEE Transactions on Instrumentation and Measurement. 2009. V. 58. № 11. P. 3855–3866. DOI: 10.1109/TIM.2009.2020847.
  7. Colton D., Kress R. Integral equation methods in scattering theory. New York: John Wiley & Sons. 1983.
  8. Rektoris K. Variatsionnye metody v matematicheskoj fizike i tekhnike: Per. s angl. M.: Mir. 1985. (in Russian)
  9. Tikhonov A.N., Arsenin V.Ya. Metody resheniya nekorrektnykh zadach. M.: Nauka. 1979. (in Russian)
  10. Bakushinskij A.B., Goncharskij A.V. Nekorrektnye zadachi. Chislennye metody i prilozheniya. M.: Izd-vo Mosk. un-ta. 1989. (in Russian)
  11. Zaglmayr S. High order finite element methods for electromagnetic field computation. Dissertation. 2006.
  12. Faddeev D.K., Faddeeva V.N. Vychislitel'nye metody linejnoj algebry. L.-M.: Fizmatgiz. 1963. (in Russian)
  13. Khan D., Plopski A., Fujimoto Yu., et al. Surface remeshing: A systematic literature review of methods and research directions. IEEE Transactions on Visualization and Computer Graphics. 2020. V. 28. № 3. DOI: 10.1109/TVCG.2020.3016645.
  14. Alvarez Yu., Las-Heras F., Pino M.R. On the comparison between the spherical wave expansion and the sources reconstruction method. IEEE Transactions on Antennas and Propagation. 2008. V. 56. № 10. P. 3337–3341. DOI: 10.1109/TAP.2008.929519.
  15. Sarkar T.K., Djordjević A.R., Kolundžija B.M. Method of moments applied to antennas. Handbook of Antennas in Wireless Communications. CRC Press. 2018.
  16. Parini C., Gregson S., McCormick J., et al. Theory and practice of modern antenna range measurements. 2nd Expanded Edition. V. 2. Croydon: CPI Group. 2020.
  17. Romodin V.B., Shebalkova L.V., Slobodyanenko A.A., Kulik V.S. Simulation approach to the probe correction methods in the near-field antenna measurements. 2024 IEEE 3rd International Conference on Problems of Informatics, Electronics and Radio Engineering (PIERE). Novosibirsk, Russian Federation. 2024. P. 170–175. DOI: 10.1109/PIERE62470.2024.10804957.
  18. Mackenzie A.I., Rao S.M., Baginski M.E. Method of moments solution of electromagnetic scattering problems involving arbitrarily-shaped conducting/dielectric bodies using triangular patches and pulse basis functions. IEEE Transactions on Antennas and Propagation. 2009. V. 58. № 2. P. 488–493. DOI: 10.1109/tap.2009.2037839.
  19. Gibson W.C. The method of moments in electromagnetics. Chapman & Hall/CRC, Taylor & Francis Group, UK. 2008.
  20. Rao S., Wilton D., Glisson A. Electromagnetic scattering by surfaces of arbitrary shape. IEEE Transactions on Antennas and Propagation. 1982. V. 30. № 3. P. 409–418. DOI: 10.1109/TAP.1982.1142818.
  21. Cowper G.R. Gaussian quadrature formulas for triangles. International Journal for Numerical Methods in Engineering. 1973. V. 7. P. 405–408. DOI: 10.1002/nme.1620070316.
  22. Quijano J.L.A., Vecchi G. Field and source equivalence in source reconstruction on 3D surfaces. Progress in Electromagnetics Research. 2010. V. 103. P. 67–100. DOI: 10.2528/PIER10030309.
  23. Marengo E.A., Ziolkowski R.W. Nonradiating and minimum energy sources and their fields: Generalized source inversion theory and applications. IEEE Transactions on Antennas and Propagation. V. 48. № 10. P. 1553–1562. DOI: 10.1109/8.899672.
  24. Duarte M.F., Eldar Y.C. Structured compressed sensing: From theory to applications. IEEE Transactions on Signal Processing. 2011. V. 59. № 9. P. 4053–4085. DOI: 10.1109/TSP.2011.2161982.
  25. Wang Y., Yagola A.G., Yang C. Optimization and regularization for computational inverse problems and applications. Springer. 2011.
  26. Björck Å. Numerical methods for least squares problems. Philadelphia: Society for Industrial and Applied Mathematics. 1996.
  27. Sarkar T., Arvas E. On a class of finite step iterative methods (conjugate directions) for the solution of an operator equation arising in electromagnetics. IEEE Transactions on Antennas and Propagation. 1985. V. 33. № 10. P. 1058–1066. DOI: 10.1109/TAP.1985.1143493.
  28. Das N.K. Antenna elements and arrays. In the Electrical Engineering Handbook. Chen W.-K. (Ed.). Academic Press. 2005. P. 569–583.
  29. Yaghjian A. Approximate formulas for the far field and gain of open-ended rectangular waveguide. IEEE Transactions on Antennas and Propagation. 1984. V. 32. № 4. P. 378–384. DOI: 10.1109/TAP.1984.1143332.
  30. Garg R., Prakash B., Apisak I. Microstrip antenna design handbook. Boston: Artech House. 2001.
  31. Mie G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der physik. 1908. V. 330. № 3. P. 377–445. DOI: 10.1002/andp.19083300302.
  32. Ferrara F., Gennarelli C., Guerriero R. Near-field antenna measurement techniques. Handbook of Antenna Technologies. Singapore: Springer. 2016. P. 2107–2163.
  33. Fuchs B. et al. Phaseless near-field antenna measurements from two surface scans – Numerical and experimental investigations. IEEE Transactions on Antennas and Propagation. 2019. V. 68. № 3. P. 2315–2322. DOI: 10.1109/TAP.2019.2938744.
  34. Álvarez Y. et al. The sources reconstruction method for antenna diagnostics and imaging applications. Solutions and Applications of Scattering, Propagation, Radiation and Emission of Electromagnetic Waves. 2012. DOI: 10.5772/50744.
  35. Taaghol A., Sarkar T.K. Near-field to near/far-field transformation for arbitrary near-field geometry, utilizing an equivalent magnetic current. IEEE Transactions on Electromagnetic Compatibility. 1996. V. 38. № 3. P. 536–542. DOI: 10.1109/15.536088.
  36. Petre P., Sarkar T.K. Planar near-field to far-field transformation using an equivalent magnetic current approach. IEEE Transactions on Antennas and Propagation. 1992. V. 40. № 11. P. 1348–1356. DOI: 10.1109/8.202712.
  37. Alvarez Y., Las-Heras F., Pino M.R. Reconstruction of equivalent currents distribution over arbitrary three-dimensional surfaces based on integral equation algorithms. IEEE Transactions on Antennas and Propagation. 2007. V. 55. № 12. P. 3460–3468. DOI: 10.1109/ TAP.2007.910316.
  38. Rengarajan S.R., Rahmat-Samii Y. The field equivalence principle: Illustration of the establishment of the non-intuitive null fields. IEEE Antennas and Propagation Magazine. 2000. V. 42. № 4. P. 122–128. DOI: 10.1109/74.868058.
  39. Cano-Fácila F.J., Pivnenko S., Sierra-Castañer M. Reduction of truncation errors in planar, cylindrical, and partial spherical near-field antenna measurements. International Journal of Antennas and Propagation. 2012. V. 2012. P. 1–19. DOI: 10.1155/2012/438727.
Date of receipt: 14.02.2025
Approved after review: 28.02.2025
Accepted for publication: 14.03.2025