350 rub
Journal Antennas №3 for 2024 г.
Article in number:
Phase noise of signal generators with multichannel digital synthesizers
Type of article: scientific article
DOI: https://doi.org/10.18127/j03209601-202403-04
UDC: 621.396
Authors:

A. V. Korolev1
1 JSC “All-Russian Scientific Research Institute of Radio Engineering” (Moscow, Russia)

1 teleret@mail.ru

Abstract:

Wide use of a direct digital synthesizer (DDS) and digital to analog converters (DAC) in digital antenna arrays permits for fast modulation parameters variations and beam positioning, and also improves the quality of beam forming due to high accuracy of signal generation. However, any systematic and random phase deviations of array channels not only lead to distortion of radiation pattern but also cause deterioration of signal processing at receiver end. Phase noise is one of critical parameters of such systems. Traditional theory and empirical methods assumes small or zero phase deviation of phase of channel output signal when combining these signals. We have proposed the model in which coupling of AM and PM noise persists for any arbitrary phase deviation of channels in multistage circuits comprising multichannel digital synthesizers.

Absolute phase noise measurements of combined DACs outputs for zero phase offset and antiphase modes with two values of DAC output signal amplitude difference permit for estimation of residual phase noise of DAC and clock receiving and distribution circuitry and demonstrate good compliance of results of calculation.

Pages: 29-39
For citation

Korolev A.V. Phase noise of signal generators with multichannel digital synthesizers. Antennas. 2024. № 3. P. 29–39. DOI: https://doi.org/ 10.18127/j03209601-202403-04 (in Russian)

References
  1. Shishlov A.V. i dr. Aktivnye fazirovannye antennye reshetki – sostoyanie i tendentsii razvitiya. Zhurnal radioelektroniki. 2023. № 1. (in Russian)
  2. Berngardt O.I. i dr. Dekametrovye radary ISZF SO RAN. Solnechno-zemnaya fizika. 2020. T. 6. № 2. S. 79–92. (in Russian)
  3. Dinges S., Egorov N., Kochemasov V. Tsifrovye vychislitel'nye sintezatory dlya fazirovannykh antennykh reshetok. Elektronika: nauka, tekhnologiya, biznes. 2014. № 1. S. 160–166. (in Russian)
  4. Unchenko I.V., Emel'yanov A.A. Modul'naya mnogopozitsionnaya kogerentnaya tsifrovaya radiofotonnaya sistema. Russian Technological Journal. 2022. T. 10. № 4. S. 27–37. (in Russian)
  5. Li M. et al. Directional modulation design for multi-beam multiplexing based on hybrid antenna array structures. EURASIP Journal on Advances in Signal Processing. 2023. V. 2023. № 1. P. 1–16.
  6. Yue Y., Zhou J. A low-cost and complexity multibeam RF transmit beamformer for wideband LFM radar. IEEE Antennas and Wireless Propagation Letters. 2016. V. 15. P. 1811–1814.
  7. Walls F.L. PM and AM noise of combined signal sources. Proceedings of IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum. 2003. P. 532–540.
  8. Delos P., Jones M. Empirically based multichannel phase noise model validated in a 16-channel demonstrator. Analog Devices, Inc. 2021.
  9. Zhalud V., Kuleshov V.N. Shumy v poluprovodnikovykh ustrojstvakh. Pod obshchej red. A.K. Naryshkina. M.: Sov. radio. 1977. (in Russian)
  10. 2-port residual noise measurements. Application note [Elektronnyj resurs] / URL: https://scdn.rohde-schwarz.com/ur/pws/ dl_downloads/ dl_application/application_notes/1ef100_2port_residual_noise_measurements/1EF100_2e_2-Port_Residual_Noise_Meas.pdf.
  11. Korolev A.V., Rykov S.G. Fazovye shumy tsifrovykh vychislitel'nykh sintezatorov pri izmenenii chastot taktovogo i vykhodnogo kolebaniya. Radiotekhnika. 2021. T. 85. № 5. S. 100–116. (in Russian)
Date of receipt: 11.03.2024
Approved after review: 28.03.2024
Accepted for publication: 22.05.2024