350 rub
Journal Antennas №3 for 2023 г.
Article in number:
Nonstationary plane wave incidence on the perfectly conducting structures. Part 1. Diffraction of a nonstationary plane wave on the perfectly conducting cylinder
Type of article: scientific article
DOI: https://doi.org/10.18127/j03209601-202303-01
UDC: 621.371
Authors:

N. I. Kuzikova1
1 Nizhny Novgorod State Technical University n.a. R.E. Alekseev (Nizhny Novgorod, Russia)

Abstract:

The paper considers the incidence of a nonstationary plane wave on a perfectly conducting cylinder. To find the current on the surface of the cylinder, the well-known solution of the problem in the frequency domain has been used and the transition from the real frequency to a complex variable has been performed. Expressions for calculating the current on the sphere have been obtained using the residue formula. Graphs of the current have been plotted, which make it possible to observe its changes during the propagation of the incident wave. You can specify the following time intervals, differing in current distribution.

At 0 < t < a/c, the current on the illuminated part of the surface is close to the current determined in the geometrical optics approximation. In this case, there is naturally no current in the shadow region. For a/c < t < a/c + π/2a/c, a diffraction current appears in the shadow region, which turns out to be small compared to the current in the illuminated region. In the a/c + π/2a/c < t < a/c + πa/c, the current distribution on the cylinder surface rapidly approaches the steady-state distribution. In the steady state, the magnitude of the current is equal to the intensity of the magnetic field of the incident wave. At t > a/c + πa/c, the current practically does not change, and the steady-state distribution is preserved.

Pages: 5-12
For citation

Kuzikova N.I. Nonstationary plane wave incidence on the perfectly conducting structures. Part 1. Diffraction of a nonstationary plane wave on the perfectly conducting cylinder. Antennas. 2023. № 3. P. 5–12. DOI: https://doi.org/10.18127/j03209601-202303-01 (in Russian)

References
  1. Khyonl Kh., Maue A., Vestpfal' K. Teoriya difraktsii: Per. s nem. pod red. G.D. Malyuzhintsa. M.: Mir. 1964. (in Russian)
  2. Vaganov R.B., Katsenelenbaum B.Z. Osnovy teorii difraktsii. M.: Nauka. 1982. (in Russian)
  3. Potekhin A.I. Nekotorye zadachi difraktsii elektromagnitnykh voln. M.: Sov. radio. 1948. (in Russian)
  4. King R., U Taj-Tszun'. Rasseyanie i difraktsiya elektromagnitnykh voln: Per. s angl. pod red. E.L. Burshtejna. M.: IL. 1962. (in Russian)
  5. Markov G.T., Chaplin A.F. Vozbuzhdenie elektromagnitnykh voln. M.: Energiya. 1967. (in Russian)
  6. Dzhekson Dzh. Klassicheskaya elektrodinamika: Per. s angl. pod red. E.L. Burshtejna. M.: Mir. 1965. (in Russian)
  7. Harrington R.F. Time-harmonic electromagnetic fields. New York: McGraw-Hill. 1961.
  8. Nikol'skij V.V., Nikol'skaya T.I. Elektrodinamika i rasprostranenie radiovoln. M.: Nauka. 1989. (in Russian)
  9. Apaydin G., Sevgi L., Ufimtsev P.Y. Extension of PTD for finite objects with rounded edges: Diffraction at a soft trilateral cylinder. IEEE Antennas and Wireless Propagation Letters. 2017. V. 16. P. 2590–2593. DOI: 10.1109/LAWP.2017.2734958.
  10. Darsavelidze I., Zaridze R. About one method for the approximate solution the plane wave diffraction problem by the sphere. 2022 IEEE 2nd Ukrainian Microwave Week (UkrMW). 2022. DOI: 10.1109/UkrMW58013.2022.10037157.
  11. Spravochnik po spetsial'nym funktsiyam. Pod red. M. Abramovitsa i I. Stigan. Per. s angl. pod red. V.A. Ditkina i L.N. Karamazinoj. M.: Nauka. 1979. (in Russian)
  12. Ditkin V.A., Prudnikov A.P. Operatsionnoe ischislenie. M.: Vysshaya shkola. 1975. (in Russian)
  13. Sveshnikov A.G., Tikhonov A.N. Teoriya funktsij kompleksnoj peremennoj. M.: Nauka. 1967. (in Russian)
  14. Korn G., Korn T. Spravochnik po matematike: Per. s angl. pod red. I.G. Aramanovicha. M.: Nauka. 1977. (in Russian)
Date of receipt: 30.03.2023
Approved after review: 17.04.2023
Accepted for publication: 26.05.2023