V. A. Obukhovets – Dr.Sc. (Eng.), Professor, Department of Antennas and Radio Transmitters, Institute for Radiotechnical Systems and Control of Southern Federal University (Taganrog) E-mail: vaomailru@mail.ru
M. M. Migalin – Undergraduate Student, Department of Antennas and Radio Transmitters, Institute for Radiotechnical Systems and Control of Southern Federal University (Taganrog)
Investigation results of mobile communication two-element antenna arrays with different types of decoupling structures have been presented. CAD modeling of the antenna with a decoupling structure has been performed by means of ANSYS HFSS. A number of decoupling structures and their influence on antenna radiation pattern and S-parameters have been investigated. Antennas with the best decoupling structure and without it have been produced, investigated and compared. The evaluation of the spectral efficiency improvement has been presented.
- Bakulin M.G., Varukina L.A., Krejndelin V.B. Tekhnologiya MIMO: principy i algoritmy. M.: Goryachaya liniya–Telekom. 2014.
- Yang J.Ou., Yang F., Wang Z.M. Reducing mutual coupling of closely spaced microstrip MIMO antennas for WLAN application // IEEE Antennas and Wireless Propagation Letters. 2011. V. 10. P. 310–313.
- Vaughan R.G., Andersen J.B. Antenna diversity in mobile communications // Proc. of IEEE Transactions on Vehicular Technology. 1987. V. 36. № 4. P. 147–172.
- Inanoglu H. Multiple-input muliple-output system capacity: Antennas and propagation aspects // Antennas and Propagation Magazine. 2013. V. 55. № 1. P. 254–273.
- Khansen R.S. Fazirovannye antennye reshetki. Izd. 2-e. M.: Tekhnosfera. 2012.
- Habashil A., Nourinia J., Ghobadi C. A rectangular defected ground structure (DGS) for reduction of mutual coupling between closelyspaced microstrip antennas // 20th Iranian Conf. on Electrical Engineering. 2012. Tehran, Iran. P. 1347–1351.
- Chiu C.Y., Cheng C.-H., Murch R.D., Rowell C.R. Reduction of mutual coupling between closely-packed antenna elements // IEEE Transactions on Antennas and Propagation. 2007. V. 55. № 6. P.1732–1738.
- Yang F., Rahmat-Samii Y. Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications // IEEE Transactions on Antennas and Propagation. 2003. V. 51. № 10. P. 2936–2946.
- Ma N., Zhao H. Reduction of the mutual coupling between aperture coupled microstrip patch antennas using EBG structure // 2014 IEEE International Wireless Symposium. 2014. P. 1–4.
- Diallo A., Luxey C., Le Thuc P., Staraj R., Kossiavas G. Enhanced two-antenna structures for universal mobile telecommunications system diversity terminals // IET Microwaves, Antennas & Propagation. 2008. V. 2. № 1. P. 94–101.
- Xue C.-D., Zhang X.Y., Cao Y.F., Hou Z., Ding C.F. MIMO antenna using hybrid electric and magnetic coupling for isolation enhancement // IEEE Transactions on Antennas and Propagation. 2017. V. 65. № 10. P. 5162–5170.
- Farsi S., Aliakbarian H., Schreurs D., Nauwelaers B., Vandenbosch G.A.E. Mutual coupling reduction between planar antennas by using a simple microstrip U-section // IEEE Antennas and Wireless Propagation Letters. 2012. V. 11. P. 1501–1503.
- Sharawi M.S. Current misuses and future prospects for printed multiple-input, multiple-output antenna systems // IEEE Antennas and Propagation Magazine. 2017. V. 59. № 2. P. 162–170.
- Blanch S., Romeu R., Corbella I. Exact representation of antenna system diversity performance from input parameters description // Electronics Letters.2003. V. 39. № 9. P. 705–707.
- Li J., Zhao J.-B., Liang J.-J., Zhong L.-L., Song J. Metamaterial-based planar compact antenna with low mutual coupling // Microwave Journal. 2018. V. 61. № 5. URL: http://www.microwavejournal.com/articles/30268.