350 rub
Journal Science Intensive Technologies №5 for 2023 г.
Article in number:
Digital behavioral model of CHPP operating personnel as a tool for managing the reliability of the human factor
Type of article: scientific article
DOI: https://doi.org/10.18127/j19998465-202305-06
UDC: 621.316.7; 005.95/.96
Authors:

M.V. Alyushin1, V.D. Bitney2, L.V. Kolobashkina3, A.V. Okhlopkov4, L.S. Chudnovsky5

1,3 National Research Nuclear University MEPhI (Moscow, Russia)

2,4 PJSC Mosenergo (Moscow, Russia)

5 Joint Stock Company Scientific and Production Corporation Precision Instrumentation Systems (Moscow, Russia)

Abstract:

One of the factors that determine the risk of occurrence, as well as the severity of the consequences of ka-tastrophe, primarily of man-made origin, is the so-called human factor (BSF). Management of the reliability of the Black Sea Fleet in order to predict and prevent possible man-made accidents and disasters is an extremely relevant complex problem, involving the solution of a number of scientific, methodological and practical problems. Unfortunately, the currently developed and used in practice methodological and technical means of monitoring the employee's condition, as well as predicting his possible change, are very effective, and in most cases they simply do not allow monitoring the current state of the employee directly in the process of fulfilling his production or official duties.

Purpose – create effective methodological and technical means of monitoring the state of the operating personnel of the CHPP in real time, as well as predicting its possible change to prevent the recurrence of the main equipment and the threat to the health and life of the personnel.

The development of methodological and technical means for effective control of BSF reliability is shown. It was noted that the experimental operation of a prototype of an automated information and measuring system (AIIS) for monitoring and forecasting in real production conditions at the TETs-26 (Moscow) confirmed the prospects for its use as an effective tool for managing the reliability of the Black Sea Fleet.

The results of the study are in demand at many industrial enterprises of AIIS monitoring and forecasting, operating in real time. The use of such technical means is also due to the possibility of monitoring the condition of workers who have had Covid-19, as a rule, requiring special attention.

Pages: 53-63
For citation

Alyushin M.V., Bitney V.D., Kolobashkina L.V., Okhlopkov A.V., Chudnovsky L.S. Digital behavioral model of CHPP operating personnel as a tool for managing the reliability of the human factor. Science Intensive Technologies. 2023. V. 24. № 5. P. 53−63. DOI: https://doi.org/10.18127/ j19998465-202305-06 (in Russian)

References
  1. Alekhin G.G. Analiz avarijnyh situacij na teploelektrocentralyah. Molodoj uchenyj. 2018. № 42 (228). S. 1–3. URL: https://moluch.ru/archive/228/53201/ (data obrashcheniya: 17.04.2022) (in Russian).
  2. Avarii na TEC i kotel'nyh v RF, privedshie k krupnym pereboyam teplosnabzheniya: [Elektronnyj resurs]. URL: https://tass.ru/info/3977533. (Data obrashcheniya: 18.08.2021) (in Russian).
  3. Energetiki schitayut prichinoj avarii na TEC v Peterburge chelovecheskij faktor: [Elektronnyj resurs]. URL: https://www.ruscable.ru/ news/2011/05/25/Energetiki_schitaut_prichinoj_avarii_na_TETS/. (Data obrashcheniya: 18.08.2021) (in Russian). 
  4. Rukin M. Analiz avarijnyh situacij na teploelektrostanciyah. Chast' 1: [Elektronnyj resurs]. URL: http://secuteck.ru/articles2/firesec/analizavariynyh-situatsiy-na-teploelektrostantsiyah-chast-1. (Data obrashcheniya: 18.08.2021) (in Russian). 
  5. Dement'ev A. Riski i ugrozy rossijskoj elektroenergetiki. Puti preodoleniya: [Elektronnyj resurs]. URL: https://energosmi.ru/archives/ 16839. (Data obrashcheniya: 18.08.2021) (in Russian).
  6. Ushcherb prirode ot avarii na TEC v Noril'ske ocenili v 2 mlrd dollarov: [Elektronnyj resurs]. URL: https://www.bbc.com/russian/ features-53282724. (Data obrashcheniya: 18.08.2021) (in Russian).
  7. Krupnejshie teploelektrostancii Rossii TES po moshchnosti ot 1000 MVt (Tablica): [Elektronnyj resurs]. URL: https://infotables.ru/geografiya/ 860-krupnejshie-teploelektrostantsii-rossii. (Data obrashcheniya: 18.08.2021) (in Russian).
  8. Agafonov A.A., Blashkova S.L., Dautov F.F. Faktory riska dlya zdorov'ya rabotnikov cekhov teplovoj elektrostancii. Fundamental'nye issledovaniya. 2012. № 12 (Chast' 2). S. 215–218 (in Russian).
  9. Alyushin M.V., Kolobashkina L.V., Rozhanskaya Y.N. Measurement of Static and Dynamic Bio-Parameters of a Person in Remote Systems for Current Psycho- Emotional and Functional State Monitoring. Proceedings of the Third International Conference Ergo-2018: Human Factors in Complex Technical Systems and Environments (Ergo-2018). Saint Petersburg, Russia (4–7 July 2018). 2018.  P. 161−165.
  10. Alyushin M.V., Kolobashkina L.V. Monitoring bioparametrov cheloveka na osnove distancionnyh tekhnologij. Voprosy psihologii. 2014. № 6. S. 135–144 (in Russian).
  11. Alyushin M.V., Alyushin A.V., Andryushina L.O., Kolobashkina L.V., Pshenin V.V. Distancionnye i nekontaktnye tekhnologii registracii bioparametrov operativnogo personala kak sredstvo upravleniya chelovecheskim faktorom i povysheniya bezopasnosti AES. Global'naya yadernaya bezopasnost'. 2013. № 3(8). S. 69−77 (in Russian).
  12. Alyushin M. V., Kolobashkina L. V., Golov P. V., Nikishov K. S. Adaptive Behavioral Model of the Electricity Object Management Operator for Intelligent Current Personnel Condition Monitoring Systems. Mechanisms and Machine Science (book series). 2020. V. 80.  P. 319–327. DOI 10.1007/978-3-030-33491-8_38.
  13. Bokeriya L.A., Bokeriya O.L., Volkovskaya I.V. Variabel'nost' serdechnogo ritma: metody izmereniya, interpretaciya, klinicheskoe ispol'zovanie. Annaly aritmologii. 2009. № 4. S. 21–32 (in Russian).
  14. Heart rate variability, standards of measurement, physiological interpretation and clinical use. Task force of the European Society of Cardiology and the North American Society of pacing and electrophysiology. Eur. Heart J. V. 17. 1996. R. 354–381.
  15. SanPiN 2.2.4.1294-03 «Gigienicheskie trebovaniya k aeroionnomu sostavu vozduha proizvodstvennyh obshchestvennyh pomeshchenij» (in Russian).
  16. SanPiN 2.2.2/2.4.1340-03I «Gigienicheskie trebovaniya k personal'nym elektronno-vychislitel'nym mashinam i organizacii raboty» (in Russian).
  17. SanPiN 2.2.4.3359-16 «Sanitarno-epidemiologicheskie pravila i normativy» (in Russian).
  18. PS25101 EPIC Ultra High Impedance ECG Sensor. Advance Information: [Электронный ресурс]. URL: https://datasheet.elcodis.com/ pdf2/86/81/868187/ps25101.pdf. (Дата обращения: 14.04.2022).
  19. Alyushin M. V., Kolobashkina L.V. Laboratory approbation of a new visualization form of hazardous objects control operator current psycho-emotional and functional state. Scientific Visualization. V. 10(2). 2018. P. 70−83.
Date of receipt: 10.04.2023
Approved after review: 25.04.2023
Accepted for publication: 10.07.2023