Magd E. Kahil1, Samah A. Ammar2
1 Modern Sciences and Arts University, Faculty of Engineering (Giza, Arab Republic of Egypt)
2 Ain Shams University, Women’s colleague for Arts, Science and Education, (Cairo, Arab Republic of Egypt)
1 mkahil@msa.edu.eg, 2 Samah.Ammar@women.asu.edu.eg
A Clifford Space is counted to be a tempting approach to unify both micro-physics and macro-physics simultaneously. Such a tendency may be found in the realm of replacing vectors with poly-vectors. Accordingly, the problem of motion becomes essential to express the motion of extended particles rather than test particles. These equations are performed by using an equivalent Bazanski Lagrangian in a Clifford space. From this perspective, a generalized type an equation for spinning density tensors and spinning density deviation tensors are obtained. Spinning deviation tensors in a Clifford space may give a better performance to examine the problem of stability for spinning density tensors as expressed in terms of vectors defined in such a class of Riemannian geometry.
Kahil M.E., Ammar S.A. Motion of Spinning Density Tensors in a Clifford Space. Nonlinear World. 2024. V. 22. № 3. P. 62–80. DOI: https://doi.org/10.18127/ j20700970-202403-07
- Collins P., Martin A., Squires E. Particle Physics and Cosmology. New York. John Wiley and Sons. 1989.
- Hehl F.W., von der Heyde P., Kerlick G.D., Nester J. M. General Relativity with Spin and Torsion: Foundations and Prospects. Rev. Mod. Phys. 1976. V. 48. P. 393–416.
- Lasenby A., Doran C., Gull S. Gravity, Gauge Theories and Geometric Algebra. Phil. Trans. R. Soc. Lond. A. 1998. V. 582. P. 356–487.
- Castro C., Pavsic M. The Extended Relativity Theory in Clifford Spaces. Prog. Phys. 2005. V. 1. P. 31.
- Kahil M.E. Motion in Clifford Space. J. Mod. Phys. 2020. V. 11. P. 1865–1873.
- Castro C. Progress in Clifford Space Gravity” Advances in Applied Clifford Algebras. 2012. V. 23. P. 39.
- Bazanski S.L. Hamilton–Jacobi formalism for geodesics and geodesic deviations. J. math. phys. 1989. V. 30. P. 1018–1029.
- Kahil M.E. Motion in Kaluza-Klein type theories. J. math. phys. 2006. V. 47. P. 052501.
- Kahil M.E., Ammar S.A., Refaey S.A. Motion of Spinning and Spinning Deviation in Riemannian Geometry. Gravit. Cosmol. V.29. P. 186–192.
- Kahil M.E. Stability of Stellar System Orbiting SGR A*. Odessa Astro. Pub. 2015. V. 28. P. 126.
- Pavsic M. Kaluza-Klein Theory without Extra Dimensions: Curved Clifford Space. Phys. Lett. B. 2005. V. 614. P. 85–95.
- Chrohok Th., Hermann H., Rückner G. Spinning Fluids in Relativisitic Hydrodynamics. Thchnicshe Meckanik. 2002. V. 22. P. 1.
- Kahil M.E. Motion in bimetric type theories of gravity. Gravit. Cosmol. 2017. V. 23. P. 70–79.
- Kahil M.E. Spinning and Spinning Deviation Equations for Special Types of Gauge Theories of Gravity. Gravit. Cosmol. 2018. V. 24. P. 84–91.
- Kahil M.E. The spinning equations of motion for objects in AP-geometry. ADAP. 2018. V. 3. P. 136.
- Kahil M.E. Spinning Equations for Objects of some Classes in Finslerian Geometry. Gravit. Cosmol. 2020. V. 26. P. 241.
- Papapetrou A. Spinning test-particles in general relativity. I. Proc. R. Soc. Lond. A. 1951. V. 209. P. 248–258.
- Yasskin Ph.B., Stoeger W.R. Propagation equations for test bodies with spin and rotation in theories of gravity with torsion. Phys. Rev. D. 1980. V. 21. P. 2081–2094.
- Kleidis K., Spyrou N.K. Geodesic motions versus hydrodynamic flows in a gravitating perfect fluid: Dynamical equivalence and consequences. Class. Quant. Grav. 2000. V. 17. P. 2965–2982.
- Cao Z., Hattori K., HongoM., Xu-Guang Huang, Tya H. Gyrohydrodynamics: Relativistic spinful fluid with strong vorticity. Prog. Theor. Exp. Phys. arXiv:2205.080.
- Becattanini F., Florkowski W., Speranza E. Spin tensor and its role in nonequilibrium thermodynamics. Phys. Lett. B. 2019. V. 789. P. 419–425.
- Mosheni M. Spinning Fluid Cosmology. Phys. Lett. B. 2008. V. 663. P. 165.
- Ray J.R., Smalley L.L. Spinning fluids in general relativity. Phys. Rev. D. 1982. V. 26. P. 2619.
- Wanas M.I., Bakry M.A. A Note on General Covariant Stability Theory. 11th Marcel Grossmann Meeting. 2008. V. 2131. P. 2133.
- Kahil M.E. Dark Mattetr: The Problem of Motion. Gravit. Cosmol. 2019. V. 28. P. 126.
- Gallegos A.D., Gürsory, Yarom A. Hydrodynamics, spin currents and torsion. 2022. ArXiv:2203.05044.