Journal Nonlinear World №3 for 2024 г.
Article in number:
Motion of Spinning Density Tensors in a Clifford Space
Type of article: scientific article
DOI: 10.18127/j20700970-202403-07
UDC: 51-73
Authors:

Magd E. Kahil1, Samah A. Ammar2

1 Modern Sciences and Arts University, Faculty of Engineering (Giza, Arab Republic of Egypt)
2 Ain Shams University, Women’s colleague for Arts, Science and Education, (Cairo, Arab Republic of Egypt)
1 mkahil@msa.edu.eg, 2 Samah.Ammar@women.asu.edu.eg

Abstract:

A Clifford Space is counted to be a tempting approach to unify both micro-physics and macro-physics simultaneously. Such a tendency may be found in the realm of replacing vectors with poly-vectors. Accordingly, the problem of motion becomes essential to express the motion of extended particles rather than test particles. These equations are performed by using an equivalent Bazanski Lagrangian in a Clifford space. From this perspective, a generalized type an equation for spinning density tensors and spinning density deviation tensors are obtained. Spinning deviation tensors in a Clifford space may give a better performance to examine the problem of stability for spinning density tensors as expressed in terms of vectors defined in such a class of Riemannian geometry.

Pages: 62-80
For citation

Kahil M.E., Ammar S.A. Motion of Spinning Density Tensors in a Clifford Space. Nonlinear World. 2024. V. 22. № 3. P. 62–80. DOI: https://doi.org/10.18127/ j20700970-202403-07

References
  1. Collins P., Martin A., Squires E. Particle Physics and Cosmology. New York. John Wiley and Sons. 1989.
  2. Hehl F.W., von der Heyde P., Kerlick G.D., Nester J. M. General Relativity with Spin and Torsion: Foundations and Prospects. Rev. Mod. Phys. 1976. V. 48. P. 393–416.
  3. Lasenby A., Doran C., Gull S. Gravity, Gauge Theories and Geometric Algebra. Phil. Trans. R. Soc. Lond. A. 1998. V. 582. P. 356–487.
  4. Castro C., Pavsic M. The Extended Relativity Theory in Clifford Spaces. Prog. Phys. 2005. V. 1. P. 31.
  5. Kahil M.E. Motion in Clifford Space. J. Mod. Phys. 2020. V. 11. P. 1865–1873.
  6. Castro C. Progress in Clifford Space Gravity” Advances in Applied Clifford Algebras. 2012. V. 23. P. 39.
  7. Bazanski S.L. Hamilton–Jacobi formalism for geodesics and geodesic deviations. J. math. phys. 1989. V. 30. P. 1018–1029.
  8. Kahil M.E. Motion in Kaluza-Klein type theories. J. math. phys. 2006. V. 47. P. 052501.
  9. Kahil M.E., Ammar S.A., Refaey S.A. Motion of Spinning and Spinning Deviation in Riemannian Geometry. Gravit. Cosmol. V.29. P. 186–192.
  10. Kahil M.E. Stability of Stellar System Orbiting SGR A*. Odessa Astro. Pub. 2015. V. 28. P. 126.
  11. Pavsic M. Kaluza-Klein Theory without Extra Dimensions: Curved Clifford Space. Phys. Lett. B. 2005. V. 614. P. 85–95.
  12. Chrohok Th., Hermann H., Rückner G. Spinning Fluids in Relativisitic Hydrodynamics. Thchnicshe Meckanik. 2002. V. 22. P. 1.
  13. Kahil M.E. Motion in bimetric type theories of gravity. Gravit. Cosmol. 2017. V. 23. P. 70–79.
  14. Kahil M.E. Spinning and Spinning Deviation Equations for Special Types of Gauge Theories of Gravity. Gravit. Cosmol. 2018. V. 24. P. 84–91.
  15. Kahil M.E. The spinning equations of motion for objects in AP-geometry. ADAP. 2018. V. 3. P. 136.
  16. Kahil M.E. Spinning Equations for Objects of some Classes in Finslerian Geometry. Gravit. Cosmol. 2020. V. 26. P. 241.
  17. Papapetrou A. Spinning test-particles in general relativity. I. Proc. R. Soc. Lond. A. 1951. V. 209. P. 248–258.
  18. Yasskin Ph.B., Stoeger W.R. Propagation equations for test bodies with spin and rotation in theories of gravity with torsion. Phys. Rev. D. 1980. V. 21. P. 2081–2094.
  19. Kleidis K., Spyrou N.K. Geodesic motions versus hydrodynamic flows in a gravitating perfect fluid: Dynamical equivalence and consequences. Class. Quant. Grav. 2000. V. 17. P. 2965–2982.
  20. Cao Z., Hattori K., HongoM., Xu-Guang Huang, Tya H. Gyrohydrodynamics: Relativistic spinful fluid with strong vorticity. Prog. Theor. Exp. Phys. arXiv:2205.080.
  21. Becattanini F., Florkowski W., Speranza E. Spin tensor and its role in nonequilibrium thermodynamics. Phys. Lett. B. 2019. V. 789. P. 419–425.
  22. Mosheni M. Spinning Fluid Cosmology. Phys. Lett. B. 2008. V. 663. P. 165.
  23. Ray J.R., Smalley L.L. Spinning fluids in general relativity. Phys. Rev. D. 1982. V. 26. P. 2619.
  24. Wanas M.I., Bakry M.A. A Note on General Covariant Stability Theory. 11th Marcel Grossmann Meeting. 2008. V. 2131. P. 2133.
  25. Kahil M.E. Dark Mattetr: The Problem of Motion. Gravit. Cosmol. 2019. V. 28. P. 126.
  26. Gallegos A.D., Gürsory, Yarom A. Hydrodynamics, spin currents and torsion. 2022. ArXiv:2203.05044.
Date of receipt: 24.05.2024
Approved after review: 12.07.2024
Accepted for publication: 28.08.2024
Download