Journal Nonlinear World №3 for 2024 г.
Article in number:
Reissner–Nordström Black Hole: Curvature and Singularity with Quantized Fundamental Tensor
Type of article: scientific article
DOI: 10.18127/j20700970-202403-06
UDC: 524.882
Authors:

A.N. Tawfik1, A.A. Alshehri2

1 Future University in Egypt (FUE), Fifth Settlement (11835 New Cairo, Arab Republic of Egypt)
2 University of Hafr Al Batin (Hafar Al Batin 39524, Kingdom of Saudi Arabia)
1 a.tawfik@fue.edu.eg

Abstract:

To reveal the nature of curvatures and singularitis which are emerged with the proposed quantization imposed on the fundamental tensor, the timelike geodesic congruence of the Reissner-Nordström metric shall be derived, analytically, and analyzed, numerically. The evolution of the geodesic congruence expansion is found nonvanishing everywhere. Furthermore, as the radial distance from the singularity decreases, an extremely large geodesic congruence expansion evolution occurs. The proposed quantization seems to largely enhance and apparently enrich the profile of the geodesic congruence expansion evolution. That the Kretschmann scalar for both versions of the fundamental tensor is found finite everywhere allows for an unambiguous assessment that the curvatures and singularities are likely real and essential (not artifact in some coordinate systems). We conclude that the proposed quantization seems to locally sharpen the curvatures and hence the singularities of the charged, non-rotating, spherically symmetric, and massive Reissner-Nordström black hole. This finding would alter the Schwarzschild radius and even the entire black hole geometry, especially at relativistic quantum scales. We also conclude that the additional curvatures even with their approximate qualitative estimation point to a rich spacetime structure which is apparently overseen in the classical limit.

Pages: 49-61
For citation

Tawfik A.N., Alshehri A.A. Reissner-Nordström Black Hole: Curvature and Singularity with Quantized Fundamental Tensor. Nonlinear World. 2024. V. 22. № 3. P. 49–61. DOI: https://doi.org/10.18127/ j20700970-202403-06

References
  1. Bryce DeWitt. The quantization of geometry. Eastern Theoretical Physics Conference Proceedings. 1962. P. 353–386.
  2. Abdel Nasser Tawfik, Tahia F. Dabash. Born reciprocity and relativistic generalized uncertainty principle in Finsler structure: Fundamental tensor in discretized curved spacetime. Int. J. Mod. Phys. D, 2023. V. 32. № 9. P. 1–11. DOI:10.1142/S0218271823500608.
  3. Abdel Nasser Tawfik and Tahia F. Dabash. Born reciprocity and discretized Finsler structure: An approach to quantize GR curvature tensors on three-sphere. Int. J. Mod. Phys. D. 2023. V. 32. № 10. P. 1–12. DOI: 10.1142/S0218271823500682.
  4. Abdel Nasser Tawfik. On quantum-induced revisiting Einstein tensor in the relativistic regime. Astron. Nachr. 2022. V. 344. № 1–2. P. 1–7. DOI:10.1002/asna.20220071.
  5. Abdel Nasser Tawfik. On possible quantization of the fundamental tensor in the relativistic regime. Astron. Nachr. 2022.
    V. 344. № 1–2. P. 1–5. DOI:10.1002/asna.20220072.
  6. Abdel Magied Diab and Abdel Nasser Tawfik. A Possible Solution of the Cosmological Constant Problem Based on GW170817 and Planck Observations with Minimal Length Uncertainty. Adv. High Energy Phys., 2022:9351511, V. 2022. 1-9. DOI:10.1155/2022/9351511.
  7. Abdel Nasser Tawfik. Discretized Finsler Structure: An Approach to Quantizing the First Fundamental Form. Phys. Sci. Forum. 2023. V. 7(1). P. 36.
  8. Abdel Nasser Tawfik, Fady T. Farouk, F. Salah Tarabia, and Muhammad Maher. Minimal length discretization and properties of modified metric tensor and geodesics. 16th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories. 2021.
  9. Fady Tarek Farouk, Abdel Nasser Tawfik, Fawzy Salah Tarabia, and Muhammad Maher. On Possible Minimal Length Deformation of Metric Tensor, Levi-Civita Connection, and the Riemann Curvature Tensor. MDPI Physics. 2023. № 5(4). P. 983–1002. DOI:10.3390/physics5040064.
  10. Tawfik A., Dabash T.F. Timelike geodesic congruence in the simplest solutions of general relativity with quantum-improved metric tensor. Int. J. Mod. Phys. D. 2023. V. 32. № 15. P. 1–26. DOI:10.1142/S0218271823500979.
  11. Kolomytsev V.I. On the problem of a family of nonparallel regge trajectories. Teor. Mat. Fiz. 1972. V. 12. P. 646–651. DOI: 10.1007/BF01030039.
  12. Tsamparlis M., Grammenos Th. The Deviation equation for a general congruence in a general spacetime. Tensor (Japan). 1995. V. 56. P. 27–30.
  13. Reissner H. Über die eigengravitation des elektrischen feldes nach der einsteinschen theorie. Annalen der Physik. 1916.
    V. 355. P. 106–120. DOI:10.1002/ANDP.19163550905.
  14. Hermann Weyl. Zur gravitationstheorie. Annalen der Physik. 1917. V. 359. P. 117–145. DOI: https://doi.org/10.1002/andp. 19173591804.
  15. Gunnar Nordström. On the energy of the gravitation field in einstein’s theory. Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings. 1918. V. 20. № 2. P. 1238–1245.
  16. George Barker Jeffery. The field of an electron on einstein’s theory of gravitation. Proc. R. Soc. Lond. A. 1921. V. 99.
    № 697. P. 123–134. DOI:10.1098/rspa.1921.0028.
  17. Kretschmann E. Über die prinzipielle bestimmbarkeit der berechtigten bezugssysteme beliebiger relativitätstheorien (i), (ii). Annalen der Physik. 1915. V. 48. № 23. P. 907–982.
  18. Kretschmann E. Über den physikalischen sinn der relativitätspostulate: A. einsteins neue und seine urprüngliche relativitätstheorie. Annalen der Physik, 1917. V. 358. № 16. P. 577–614. DOI:10.1002/andp.19183581602.
  19. Henry R. C. Kretschmann scalar for a kerr-newman black hole. Astrophys. J. 2000. V. 535. № 1. P. 350–353. DOI:10.1086/ 308819.
Date of receipt: 21.05.2024
Approved after review: 09.07.2024
Accepted for publication: 28.08.2024
Download