Salah Haggag1, Moutaz Ramadan2
1 The Egyptian Russian University (Cairo 11829, Arab Republic of Egypt)
2 Port Said University (Port Said, Arab Republic of Egypt)
1 salah-haggag@eru.edu.eg
Two classes of applications of optimal control to problems in General Relativity are reviewed. The first class includes direct applications where each problem has beforehand a specific objective function. Two examples of this class are reviewed, where optimal control leads directly to the optimal solutions. Results show that optimal control is more powerful than classical variational calculus. The second class includes innovative applications where problems in General Relativity may be approached by introducing appropriate objective functions. Three examples of this class are reviewed, where an optimal inflationary universe, an optimal cosmological model and an optimal stellar model are, respectively, constructed. Results show that optimal control adds physical significance to solutions of such problems.
Haggag S., Ramadan M. Applications of optimal control to general relativity. Nonlinear World. 2024. V. 22. № 3. P. 35–48. DOI: https://doi.org/10.18127/ j20700970-202403-05
- Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F. The Mathematical Theory of Control Processes. New York: Interscience. 1962.
- Liberzon D. Calculus of Variations and Optimal Control Theory. A Concise Introduction. Princeton: Princeton University Press. 2012.
- Bechhoefer J. Control Theory for Physicists. Cambridge: Cambridge University Press. 2021. https://doi.org/10.1017/ 9780511734809.
- Misner C.W., Thorne K.S. Wheeler J.A. Gravitation. San Francisco: Freeman. 1973.
- Rhoades C.E., Ruffini R. Maximum Mass of a Neutron Star. Phys. Rev. Lett. 1974. V. 32. P. 324. DOI: https://doi.org/ 10.1103/PhysRevLett.32.324.
- Oppenheimer J.R., Volkoff G. On Massive Neutron Cores. Phys. Rev. 1939. V. 55. P. 374. DOI: https://doi.org/10.1103/ PhysRev.55.374.
- Harrison B.K., Thorne K.S., Wakano M., Wheeler J.A. Gravitation Theory and Gravitational Collapse. Chicago: University of Chicago Press. 1965. P. 16–18.
- Weinberg S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. New York: John Wiley. 1972. P. 306–307.
- Haggag S., Safko J. The Condition of Hydrostatic Equilibrium of Stellar Models Using Optimal Control. Astrophysics and Space Science. 2003. V. 283. P. 369. DOI: https://doi.org/10.1023/A:1021684407650.
- Guth A.H. The Inflationary Universe: a Possible Solution to the Horizon and Flatness Problems. Phys. Rev. D. 1981. V. 23. P. 347. DOI: https://doi.org/10.1103/PhysRevD.23.347.
- Barrow J.D., Graham A.H. Singular Inflation. Phys. Rev. D. 2015. V. 91. P. 083513. DOI: https://doi.org/10.1103/ PhysRevD.91.083513.
- Parsons P., Barrow J.D. Generalised Scalar Field Potentials and Inflation. Phys. Rev. D. 1995. V. 51. P. 6757. DOI: https:// doi.org/10.1103/PhysRevD.51.6757.
- Chervon S.V., Zhuravlev V.M., Shchigolev V.K. New Exact Solutions in Standard Inflationary Models. Phys. Lett. 1997. V. 398.
P. 269. DOI: https://doi.org/10.1016/S0370-2693(97)00238-4. - Barrow J.D. Exact Inflationary Universes with Potential Minima. Phys. Rev. 1994. V. 49. P. 3055. DOI: https://doi.org/10.1103/PhysRevD.49.3055.
- Zhuravlev V.M., Chervon S.V., Shchigolev V.K. J. of Experim. and Theor. Phys. 1998. V. 87. P. 223. DOI: https://doi.org/10.1134/1.558649.
- Haggag S., Desokey F., Ramadan M. A Cosmological Inflationary Model Using Optimal Control. Grav. and Cosmol. 2017. V. 23. P. 236. DOI: https://doi.org/10.1134/S0202289317030069.
- Ozer M., Taha M.O. A Possible Solution to the Main Cosmological Problems. Phys. Lett. 1986. V. B 171. P. 4. DOI: https:// doi.org/10.1016/03702693(86)91421-8.
- Ozer M., Taha M.O. A Model of the Universe Free of Cosmological Problems. Nuclear Phys. 1987. V. B 287. P. 776. DOI: https://doi.org/10.1016/05503213(87)90128-3.
- Chen W., Wu Y. Implications of a Cosmological Constant Varying as R−2. Phys. Rev. D. 1990. V. 41. P. 695. DOI: https: //doi.org/10.1103/PhysRevD.41.695.
- Berman M. Cosmological Models with a Variable Cosmological Term. Phys. Rev. D. 1991. V. 43. P. 1075. DOI: https://doi.org/10.1103/PhysRevD.43.1075.
- Al-Rawaf A.S., Taha M.O. Cosmology of General Relativity without Energy-Momentum Conservation. Gen. Rel. Grav. 1996. V. 28. P. 935. DOI: https://doi.org/10.1007/BF02113090.
- Al-Rawaf A.S. A Cosmological Model with a Generalised Cosmological Constant. Mod. Phys. Lett. 1998. V. A 13. P. 29. DOI: https://doi.org/10.1142/S0217732398000498.
- Overduin J.M., Cooperstock F.I. Evolution of the Scale Factor with a Variable Cosmological Term. Phys. Rev. 1998. V. D 58. P. 043506. DOI: https://doi.org/10.1103/PhysRevD.58.043506.
- Arbab A.I. Cosmic Acceleration with a Positive Cosmological Constant. Class. Quantum Gravity. 2003. V. 28. P. 93. DOI: https://doi.org/10.1088/0264-9381/20/1/307.
- Arbab A.I. Cosmological Consequences of a Built-In Cosmological Constant Model. J. Cosmol. Astro. Phys. 2003. V. 05. P. 008. DOI: https://doi.org/10.1088/1475-7516/2003/05/008.
- Haggag S., Abdel-Hafeez S.A., Ramadan M. A Closed Universe with Maximum Life-Time Using Optimal Control. 2018. http://arxiv.org/abs/1905.11525.
- Haggag S. Optimal design of relativistic stellar models. Phys. Scr. 2023. V. 98. P. 115009 DOI: https://doi.org/ 10.1088/1402-4896/acfd64.
- Bizon P., Malec E., O Murchaha N. Binding energy for spherical stars. Class. Quantum Grav. 1990. V. 7. P. 1953. DOI: https://doi.org/10.1088/0264-9381/7/11/008.
- Lattimer J.M., Prakash M. Neutron Star Structure and the Equation of State Ap. J. 2001. V. 550. P. 426. DOI: https:// doi.org/10.1086/319702.
- Tolman R.C. Static Solutions of Einstein’s Field Equations for Spheres of Fluid. Phys. Rev. 1939. V. 55. P. 364. DOI: https: //doi.org/10.1103/PhysRev.55.364.
- Buchdahl H.A. General-Relativistic Fluid Spheres. III. a Static Gaseous Model. Ap. J. 1967. V. 147. P. 310. DOI: https: //doi.org/10.1086/149001.
- Buchdahl H.A., Land W.J. The relativistic incompressible sphere. J. Aust. Math. Soc. 1968. V. 8. P. 6. DOI: https://doi.org/ 10.1017/S1446788700004559.
- Eddington A.S. The Mathematical Theory of Relativity, Cambridge University Press. 1965. P. 122.
- Cooperstock F.I., Sarracino R.S. Nature. 1976. V. 264. P. 529. DOI: https://doi.org/10.1038/264529a0.
- Fujisawa A., Saida H., Yoo Ch., Nambu Y. Maximum Mass of a Barotropic Spherical Star. Class. Quantum Grav. 2015.
V. 32. P. 13. DOI: https://doi.org/10.1088/0264-9381/32/21/215028. - Ansel Q. Loop Quantum Gravity with Optimal Control Path Integral, and Application to Black Hole Tunneling. Gen. Rel. Grav. 2022. V. 54. P. 42. DOI: https://doi.org/10.1007/s10714-022-02923-6.
- Grøn, Ø. Introduction to Einstein’s Theory of Relativity. Second Edition. Switzerland: Springer Nature. 2020. Section 7.6. DOI: https://doi.org/10.1007/978-3-030-43862-3.